1.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
2.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
3.Erratum to: Corrigendum: 2023 Korean Society of Menopause -Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(3):179-179
4.The 2024 Guidelines for Osteoporosis - Korean Society of Menopause
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong- Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(1):1-23
5.The 2024 Guidelines for Osteoporosis - Korean Society of Menopause: Part II
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(2):55-77
6.Corrigendum: 2023 Korean Society of Menopause - Osteoporosis Guidelines Part I
Dong Ock LEE ; Yeon Hee HONG ; Moon Kyoung CHO ; Young Sik CHOI ; Sungwook CHUN ; Youn-Jee CHUNG ; Seung Hwa HONG ; Kyu Ri HWANG ; Jinju KIM ; Hoon KIM ; Dong-Yun LEE ; Sa Ra LEE ; Hyun-Tae PARK ; Seok Kyo SEO ; Jung-Ho SHIN ; Jae Yen SONG ; Kyong Wook YI ; Haerin PAIK ; Ji Young LEE
Journal of Menopausal Medicine 2024;30(2):126-126
8.Induction of the BRAFV600E Mutation in Thyroid Cells Leads to Frequent Hypermethylation
Jin Wook YI ; Seong Yun HA ; Hyeon-Gun JEE ; Kwangsoo KIM ; Su-jin KIM ; Young Jun CHAI ; June Young CHOI ; Kyu Eun LEE
Clinical and Experimental Otorhinolaryngology 2022;15(3):273-282
Objectives:
. The BRAFV600E mutation is a major driver mutation in papillary thyroid cancer. The aim of this study was to elucidate the correlation between DNA methylation and gene expression changes induced by the BRAFV600E mutation in thyroid cells.
Methods:
. We used Nthy/BRAF cell lines generated by transfection of Nthy/ori cells with the wild-type BRAF gene (Nthy/WT cells) and the V600E mutant-type BRAF gene (Nthy/V600E cells). We performed gene expression microarray and DNA methylation array analyses for Nthy/WT and Nthy/V600E cells. Two types of array data were integrated to identify inverse correlations between methylation and gene expression. The results were verified in silico using data from The Cancer Genome Atlas (TCGA) and in vivo through pyrosequencing and quantitative real-time polymerase chain reaction (qRT-PCR).
Results:
. In the Nthy/V600E cells, 199,821 probes were significantly hypermethylated, and 697 genes showed a “hypermethylation-downregulation” pattern in Nthy/V600E. Tumor suppressor genes and apoptosis-related genes were included. In total, 66,446 probes were significantly hypomethylated, and 227 genes showed a “hypomethylation-upregulation” pattern in Nthy/V600E cells. Protooncogenes and developmental protein-coding genes were included. In the TCGA analysis, 491/697 (70.44%) genes showed a hypermethylation-downregulation pattern, and 153/227 (67.40%) genes showed a hypomethylation-upregulation pattern. Ten selected genes showed a similar methylation-gene expression pattern in pyrosequencing and qRT-PCR.
Conclusion
. Induction of the BRAFV600E mutation in thyroid cells led to frequent hypermethylation. Anticancer genes, such as those involved in tumor suppression or apoptosis, were downregulated by upstream hypermethylation, whereas carcinogenic genes, such as protooncogenes, were upregulated by hypomethylation. Our results suggest that the BRAFV600E mutation in thyroid cells modulates DNA methylation and results in cancer-related gene expression.
9.The Amniotic Fluid Proteome Differs Significantly between Donor and Recipient Fetuses in Pregnancies Complicated by Twin-to-Twin Transfusion Syndrome
Sun Min KIM ; Byoung Kyu CHO ; Byoung Jae KIM ; Ha Yun LEE ; Errol R NORWITZ ; Min Jueng KANG ; Seung Mi LEE ; Chan Wook PARK ; Jong Kwan JUN ; Eugene C YI ; Joong Shin PARK
Journal of Korean Medical Science 2020;35(10):e73-
BACKGROUND:
Twin-to-twin transfusion syndrome (TTTS) is a serious complication of monochorionic twin pregnancies. It results from disproportionate blood supply to each fetus caused by abnormal vascular anastomosis within the placenta. Amniotic fluid (AF) is an indicator reflecting the various conditions of the fetus, and an imbalance in AF volume is essential for the antenatal diagnosis of TTTS by ultrasound. In this study, two different mass spectrometry quantitative approaches were performed to identify differentially expressed proteins (DEPs) within matched pairs of AF samples.
METHODS:
We characterized the AF proteome in pooled AF samples collected from donor and recipient twin pairs (n = 5 each) with TTTS by a global proteomics profiling approach and then preformed the statistical analysis to determine the DEPs between the two groups. Next, we carried out a targeted proteomic approach (multiple reaction monitoring) with DEPs to achieve high-confident TTTS-associated AF proteins.
RESULTS:
A total of 103 AF proteins that were significantly altered in their abundances between donor and recipient fetuses. The majority of upregulated proteins identified in the recipient twins (including carbonic anhydrase 1, fibrinogen alpha chain, aminopeptidase N, alpha-fetoprotein, fibrinogen gamma chain, and basement membrane-specific heparan sulfate proteoglycan core protein) have been associated with cardiac or dermatologic disease, which is often seen in recipient twins as a result of volume overload. In contrast, proteins significantly upregulated in AF collected from donor twins (including IgGFc-binding protein, apolipoprotein C-I, complement C1q subcomponent subunit B, apolipoprotein C-III, apolipoprotein A-II, decorin, alpha-2-macroglobulin, apolipoprotein A-I, and fibronectin) were those previously shown to be associated with inflammation, ischemic cardiovascular complications or renal disease.
CONCLUSION
In this study, we identified proteomic biomarkers in AF collected from donor and recipient twins in pregnancies complicated by TTTS that appear to reflect underlying functional and pathophysiological challenges faced by each of the fetuses.
10.Consensus statement on coronary intervention during the coronavirus disease 19 pandemic: from the Korean Society of Interventional Cardiology
Kwan Yong LEE ; Bong-Ki LEE ; Won-Jang KIM ; Se Hun KANG ; Taek Kyu PARK ; Song-Yi KIM ; Jung-Won SUH ; Chang-Hwan YOON ; Dong Heon YANG ; Sung Kee RYU ; Sang-Hyun KIM ; Sung Yun LEE ; In-Ho CHAE ;
The Korean Journal of Internal Medicine 2020;35(4):749-757
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by the novel virus severe acute respiratory syndrome coronavirus 2. The first case developed in December, 2019 in Wuhan, China; several months later, COVID-19 has become pandemic, and there is no end in sight. This disaster is also causing serious health problems in the area of cardiovascular intervention. In response, the Korean Society of Interventional Cardiology formed a COVID-19 task force to develop practice guidelines. This special article introduces clinical practice guidelines to prevent secondary transmission of COVID-19 within facilities; the guidelines were developed to protect patients and healthcare workers from this highly contagious virus. We hope these guidelines help healthcare workers and cardiovascular disease patients around the world cope with the COVID-19 pandemic.

Result Analysis
Print
Save
E-mail