1.Effects of enhanced recovery nursing based on traditional Chinese medicine nursing operation technology in perioperative period of elderly patients with total hip arthroplasty
Yeyan LIN ; Jing ZHU ; Cunxian LYU ; Shaoxi XIANG ; Xuelai ZHOU ; Haijing CHEN
Chinese Journal of Modern Nursing 2022;28(33):4700-4704
Objective:To explore the effect of enhanced recovery nursing based on traditional Chinese medicine nursing operation technology in the perioperative period of elderly patients with total hip arthroplasty.Methods:From January 2020 to December 2021, 90 patients with unilateral total hip arthroplasty in Wenzhou Traditional Chinese Medicine Hospital were selected by convenience sampling as research objects. The patients from January to December 2020 were taken as the control group ( n=43) , and the patients from January to December 2021 were taken as the observation group ( n=47) . The patients in the control group adopted the traditional orthopedic perioperative nursing, while the patients in the observation group received the enhanced recovery perioperative nursing based on traditional Chinese medicine nursing operation technology on the basis of the control group. The pain, postoperative recovery and complications were compared between the two groups. Results:The time of first exhaust, eating, getting out of bed and hospital stay after operation in the observation group were shorter than those in the control group, the Visual Analogue Scale (VAS) score at discharge was lower than that in the control group, and the incidence of postoperative gastrointestinal reactions and postoperative urinary retention were lower than those in the control group, with statistically significant differences ( P<0.01) . Conclusions:The enhanced recovery nursing based on traditional Chinese medicine nursing operation technology applied to elderly patients with unilateral total hip arthroplasty during perioperative period can reduce postoperative complications, pain and hospital stay, which is worthy of clinical promotion.
2.Treatment of Sepsis-induced Inflammatory Responses with Xijiao Dihuangtang by Modulation of PKM2-mediated One-carbon Metabolism Pathway
Qixiang YAN ; Yeyan ZHU ; Fan GE ; Qimeng SUN ; Leyao YE ; Fang TIAN ; Jun LU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):18-26
ObjectiveTo investigate the effects of Xijiao Dihuangtang (XJDHT) on mice with sepsis and cellular models of sepsis and explore its molecular mechanism in alleviating sepsis-induced inflammatory responses via regulating pyruvate kinase M2 (PKM2)-mediated one-carbon metabolism pathway. MethodsForty C57BL/6N mice were randomly divided into four groups: normal group, model group, low-dose XJDHT group (7.7 g·kg-1), and high-dose XJDHT group (15.4 g·kg-1). After one week of continuous gavage, sepsis was induced using cecal ligation and puncture (CLP) in groups except the normal group. 24 h after the surgery, mortality rates in all groups were recorded, and serum cytokines were measured by enzyme linked immunosorbent assay (ELISA). Lung histopathology was examined by hematoxylin-eosin (HE) staining. During the in vitro experiment, the human monocytic leukemia cell line (THP-1) was exposed to various concentrations of XJDHT and treated with lipopolysaccharide (LPS) at a final concentration of 2 mg·L-1 for 24 h. Cell apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Protein levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) were measured by Western blot. Transcriptome sequencing was performed to analyze differentially expressed genes in all groups and conduct gene ontology (GO) enrichment. Key genes in the one-carbon metabolism pathway, including pyruvate kinase M2 (PKM2), 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), and phosphoglycerate dehydrogenase (PHGDH), were verified by Western blot. A PKM2 inhibition model was established using shikonin for further protein expression analysis. ResultsAnimal experiments showed that compared with the normal group, the model group exhibited significantly elevated body temperature and lung pathology (P<0.01) and increased serum TNF-α and IL-1β levels (P<0.01). High-dose XJDHT reduced body temperature and lung tissue damage (P<0.01) and significantly decreased serum TNF-α and IL-1β levels (P<0.01). Low-dose XJDHT treatment showed no significant temperature change (P<0.01) but reduced serum TNF-α and IL-1β levels (P<0.01). Transcriptome sequencing and Western blot revealed significant differences in the expression of TNF-α, IL-1β, and one-carbon metabolism genes (PKM2, MTR, and PHGDH) (P<0.01). Cell experiments demonstrated that compared to the normal group, the model group showed elevated protein expressions of TNF-α and IL-1β in THP-1 cells (P<0.01), decreased Bcl-2/Bax ratio, and increased apoptosis (P<0.01). Transcriptome sequencing and Western blot revealed significant differences in the expression of TNF-α, IL-1β, and one-carbon metabolism genes (PKM2, MTR, and PHGDH) (P<0.01). Compared to the model group, high-dose XJDHT significantly increased Bax/Bcl-2 ratio and PHGDH protein expression (P<0.01) and effectively reduced cell apoptosis (P<0.01) while down-regulating protein expressions of TNF-α, IL-1β, PKM2, and MTR (P<0.01). Low-dose XJDHT moderately increased Bax/Bcl-2 ratio and PHGDH protein expression (P<0.05), reduced apoptosis (P<0.05), and decreased IL-1β and MTR protein levels (P<0.05, P<0.01), but there were no significant changes in TNF-α and PKM2 expression. After PKM2 inhibition by shikonin in THP-1 cells, the expression of protein related to one-carbon metabolism was detected. Compared with the blank group, the LPS-induced model group showed significantly upregulated PKM2 and MTR protein expression (P<0.01) and downregulated PHGDH expression (P<0.01). Compared with the model group, shikonin treatment significantly reduced PKM2 expression (P<0.05), increased PHGDH expression (P<0.01), and decreased MTR expression (P<0.05). ConclusionXJDHT can inhibit the release of inflammatory factors in sepsis, and its mechanism is related to the intervention of the PKM2-regulated one-carbon metabolism pathway in macrophages.