1.Emergence of Monosomy 7 in Philadelphia-Negative Cells during MDS Development and not CML Diagnosis Proved by Serial Droplet Digital PCR
Sholhui PARK ; Yeung Chul MUN ; Chu-Myong SEONG ; Jungwon HUH
Laboratory Medicine Online 2020;10(4):321-325
Emergence of new clonal chromosomal abnormality (CCA) has been reported in Philadelphia-negative cells in patients with chronic myeloid leukemia (CML) undergoing the tyrosine kinase inhibitor (TKI) treatment. However, the time of emergence and clinical significance of CCA remains to be elucidated. In this study, we report a CML patient undergoing TKI treatment who developed myelodysplastic syndrome (MDS) after 206 months since the diagnosis of CML. Results of droplet digital PCR performed with serial bone marrow samples revealed that monosomy 7 in Philadelphia-negative cells appeared at the time of MDS development that did not exist initially at the time of CML diagnosis.
2.Emergence of Monosomy 7 in Philadelphia-Negative Cells during MDS Development and not CML Diagnosis Proved by Serial Droplet Digital PCR
Sholhui PARK ; Yeung Chul MUN ; Chu-Myong SEONG ; Jungwon HUH
Laboratory Medicine Online 2020;10(4):321-325
Emergence of new clonal chromosomal abnormality (CCA) has been reported in Philadelphia-negative cells in patients with chronic myeloid leukemia (CML) undergoing the tyrosine kinase inhibitor (TKI) treatment. However, the time of emergence and clinical significance of CCA remains to be elucidated. In this study, we report a CML patient undergoing TKI treatment who developed myelodysplastic syndrome (MDS) after 206 months since the diagnosis of CML. Results of droplet digital PCR performed with serial bone marrow samples revealed that monosomy 7 in Philadelphia-negative cells appeared at the time of MDS development that did not exist initially at the time of CML diagnosis.
3.Diagnostic Value of Cyfra 21-1 in Differential Diagnosis of Pleural Effusion.
Hak Jun LEE ; Kwan Ho LEE ; Kyeong Cheol SHIN ; Chang Jin SHIN ; Hye Jung PARK ; Yeung Chul MUN ; Kyung Hee LEE ; Jin Hong CHUNG ; Myung Soo HYUN ; Hyun Woo LEE
Tuberculosis and Respiratory Diseases 1999;47(1):50-56
BACKGROUND: Pleural effusion is a common clinical problem and many clinical and laboratory evaluations, such as tumor marks, have been studied to discriminate malignant pleural fluid from benign pleural fluid. However their usefulness in the diagnosis of pleural effusion is still not established fully. We studied the diagnostic value of cyfra 21-1 in diagnosis of malignant pleural effusion. METHODS: Pleural fluid was obtained from 45 patients with malignant diseases(32 lung cancer patients, 13 metastatic malignant diseases) and 47 patients with benign diseases. The level of cyfra 21-1 in the pleural fluid and serum were determined using a CYFRA 21-1 enzyme immunoassay kit(Cis-Bio International Co.). The t-test was used for comparison between two diseases groups and receiver operating characteristic(ROC) curves were constructed by calculating the sensitivities and specificities of the cyfra 21-1 at several points to determine the diagnostic accuracy of the cyfra 21-1. RESULTS: In patients with primary lung cancer, the level of cyfra 21-1 in the pleural fluid was significantly higher than those of patients with benign diseases and had positive correlations between the level of cyfra 21-1 in the pleural fluid and serum levels. In the ROC curve analysis of the pleural fluid, the curve for primary lung cancer group was located closer to the left upper corner and the cut off value, sensitivity and specificity of the cyfra 21-1 of the primary lung cancer group was determined as 22.25ng/ml, 81.8% and 78.7% respectively. CONCLUSIONS: Our data indicates that the measurement of cyfra 21-1 level in pleural effusion has useful diagnostic value to discriminate malignant pleural effusion in primary lung cancer from benign pleural effusion.
Diagnosis
;
Diagnosis, Differential*
;
Humans
;
Immunoenzyme Techniques
;
Lung Neoplasms
;
Pleural Effusion*
;
Pleural Effusion, Malignant
;
ROC Curve
4.Effect of anemia correction on left ventricular structure and filling pressure in anemic patients without overt heart disease.
In Jeong CHO ; Yeung Chul MUN ; Ki Hwan KWON ; Gil Ja SHIN
The Korean Journal of Internal Medicine 2014;29(4):445-453
BACKGROUND/AIMS: There are few data on the effects of low hemoglobin levels on the left ventricle (LV) in patients without heart disease. The objective of this study was to document changes in the echocardiographic variables of LV structure and function after the correction of anemia without significant cardiovascular disease. METHODS: In total, 34 iron-deficiency anemia patients (35 +/- 11 years old, 32 females) without traditional cardiovascular risk factors or cardiovascular disease and 34 age- and gender-matched controls were studied. Assessments included history, physical examination, and echocardiography. Of the 34 patients with anemia enrolled, 20 were followed and underwent echocardiography after correction of the anemia. RESULTS: There were significant differences between the anemia and control groups in LV diameter, left ventricular mass index (LVMI), left atrial volume index (LAVI), peak mitral early diastolic (E) velocity, peak mitral late diastolic (A) velocity, E/A ratio, the ratio of mitral to mitral annular early diastolic velocity (E/E'), stroke volume, and cardiac index. Twenty patients underwent follow-up echocardiography after treatment of anemia. The follow-up results showed significant decreases in the LV end-diastolic and end-systolic diameters and LVMI, compared with baseline levels. LAVI, E velocity, and E/E' also decreased, suggesting a decrease in LV filling pressure. CONCLUSIONS: Low hemoglobin level was associated with larger cardiac chambers, increased LV, mass and higher LV filling pressure even in the subjects without cardiovascular risk factors or overt cardiovascular disease. Appropriate correction of anemia decreased LV mass, LA volume, and E/E'.
Adult
;
Anemia, Iron-Deficiency/blood/diagnosis/*drug therapy/physiopathology
;
Biological Markers/metabolism
;
Case-Control Studies
;
Echocardiography, Doppler
;
Female
;
Heart Ventricles/*physiopathology/ultrasonography
;
Hematinics/*therapeutic use
;
Hemoglobins/metabolism
;
Humans
;
Male
;
Middle Aged
;
Prospective Studies
;
Recovery of Function
;
Time Factors
;
Treatment Outcome
;
*Ventricular Function, Left
;
*Ventricular Pressure
;
*Ventricular Remodeling
;
Young Adult
5.Sole Trisomy 22 Not Associated with inv(16) in Myelodysplastic Syndrome.
Chorong HAHM ; Yusun HWANG ; Yeung Chul MUN ; Chu Myong SEONG ; Wha Soon CHUNG ; Jungwon HUH
The Ewha Medical Journal 2012;35(1):62-64
Trisomy 22 is closely associated with inv(16) or t(16;16) and could be a marker of cryptic rearrangement of CBFB/MYH11 in acute myeloid leukemia (AML). Trisomy 22 not associated with CBFB/MYH11 rearrangement is a rare event. Here, we report a case diagnosed as refractory anemia with excess blasts-2 (RAEB-2) with sole trisomy 22 in the absence of CBFB/MYH11 rearrangement. The cytogenetic study of bone marrow cells disclosed trisomy 22 in 10% of metaphase cells analyzed. The other chromosomal abnormalities were not found. Fluorescence in situ hybridization (FISH) using CBFB/MYH11 probe to detect cryptic inv(16)(p13q22) showed negative result. We also excluded rearrangements of chromosome 5, 7, 8, 20, and ETV6 by FISH. Sole trisomy 22 not associated with inv(16) is a true entity.
Anemia, Refractory
;
Bone Marrow Cells
;
Chromosome Aberrations
;
Chromosomes, Human, Pair 22
;
Chromosomes, Human, Pair 5
;
Cytogenetics
;
Fluorescence
;
In Situ Hybridization
;
Leukemia, Myeloid, Acute
;
Metaphase
;
Myelodysplastic Syndromes
;
Trisomy
6.Two Cases of Medical Device-Related Corynebacterium striatum Infection: A Meningitis and A Sepsis.
Sholhui PARK ; Hae Sun CHUNG ; Eui Kyo SEO ; Yeung Chul MUN ; Miae LEE
Annals of Clinical Microbiology 2016;19(1):28-31
Corynebacterium striatum is a commonly isolated contaminant in the clinical microbiology. However, it can be an opportunistic pathogen in immunocompromised and even immunocompetent hosts. The increasing prevalence of C. striatum infection has been associated with immunosuppression and prosthetic devices. We report a case of meningitis with cerebrospinal fluid drainage and a case of catheter-related bloodstream infection caused by C. striatum. The isolates were identified as nondiphtherial Corynebacterium species by VITEK 2 (bioMérieux, France) anaerobe and Corynebacterium card. The final identification by 16S rRNA gene sequencing analysis was C. striatum with 99.7% identity and 99.6% identity with C. striatum ATCC 6940, respectively. Both strains were sensitive to vancomycin and gentamicin, but multidrug-resistant to ciprofloxacin, penicillin, erythromycin and imipenem.
Cerebrospinal Fluid
;
Ciprofloxacin
;
Corynebacterium*
;
Drainage
;
Erythromycin
;
Genes, rRNA
;
Gentamicins
;
Imipenem
;
Immunosuppression
;
Meningitis*
;
Penicillins
;
Prevalence
;
Sepsis*
;
Vancomycin
7.Additional Genomic Aberrations Identified by Single Nucleotide Polymorphism Array-Based Karyotyping in an Acute Myeloid Leukemia Case with Isolated del(20q) Abnormality.
Chorong HAHM ; Yeung Chul MUN ; Chu Myong SEONG ; Wha Soon CHUNG ; Jungwon HUH
Annals of Laboratory Medicine 2012;32(6):445-449
Prognosis is known to be better in cases with isolated chromosomal abnormalities than in those with complex karyotypes. Accordingly, del(20q) as an isolated abnormality must be distinguished from cases in which it is associated with other chromosomal rearrangements for a better stratification of prognosis. We report a case of an isolated del(20q) abnormality with additional genomic aberrations identified using whole-genome single nucleotide polymorphism array (SNP-A)-based karyotyping. A 39-yr-old man was diagnosed with AML without maturation. Metaphase cytogenetic analysis (MC) revealed del(20)(q11.2) as the isolated abnormality in 100% of metaphase cells analyzed, and FISH analysis using D20S108 confirmed the 20q deletion in 99% of interphase cells. Using FISH, other rearrangements such as BCR/ABL1, RUNX1/RUNX1T1, PML/RARA, CBFB/MYH11, and MLL were found to be negative. SNP-A identified an additional copy neutral loss of heterozygosity (CN-LOH) in the 11q13.1-q25 region. Furthermore, SNP-A allowed for a more precise definition of the breakpoints of the 20q deletion (20q11.22-q13.31). Unexpectedly, the terminal regions showed gain on chromosome 20q. The patient did not achieve complete remission; 8 months later, he died from complications of leukemic cell infiltrations into the central nervous system. This study suggests that a presumably isolated chromosomal abnormality by MC may have additional genomic aberrations, including CN-LOH, which could be associated with a poor prognosis. SNP-A-based karyotyping may be helpful for distinguishing true isolated cases from cases in combination with additional genomic aberrations not detected by MC.
8.A proposal for improvement in the utilization rate of banked cord blood.
Young Ho LEE ; Ji Yoon KIM ; Yeung Chul MUN ; Hong Hoe KOO
Blood Research 2013;48(1):5-7
No abstract available.
Fetal Blood
9.A proposal for improvement in the utilization rate of banked cord blood.
Young Ho LEE ; Ji Yoon KIM ; Yeung Chul MUN ; Hong Hoe KOO
Blood Research 2013;48(1):5-7
No abstract available.
Fetal Blood
10.An unrelated Clone of 20q Deletion Following Successful Treatment of Leukemia in Patients with t(8;21), t(15;17) or t(9;22).
Chorong HAHM ; Yeung Chul MUN ; Chu Myong SEONG ; Wha Soon CHUNG ; Jungwon HUH
Journal of Laboratory Medicine and Quality Assurance 2012;34(2):107-111
Cases of clonal cytogenetic abnormalities in Philadelphia-negative cells during the treatment of Philadelphia-positive CML have been previously reported. However, clonal abnormalities unrelated to the original t(8;21) or t(15;17) karyotype are not common. Deletion of 20q (del(20q)) is one of the most common recurrent cytogenetic abnormalities in myeloid neoplasms. Here we describe 3 patients with t(8;21), t(15;17), or t(9;22) who developed unrelated del(20q) after successful treatment of leukemia. We retrospectively reviewed the cytogenetic results of 23 AML patients with t(8;21)(q22;q22), 28 AML patients with t(15;17)(q22;q12), and 47 CML patients with t(9;22)(q34;q11.2). We identified 3 patients with del(20q) as the only clonal aberration unrelated to the primary karyotype when they achieved complete morphologic and cytogenetic remission. The latency period between diagnosis and emergence of del(20q) was 1, 114, and 35 months for the 3 patients, respectively. There was no evidence of therapy-related MDS/AML during the follow-up period. In 1 AML patient with t(8;21), relapse occurred in a t(8;21)(q22;q22) clone and the del(20q) clones were lost. The clinical significance of del(20q) as an unrelated clonal aberration is unknown, but our study suggests that del(20q) does not cause therapy-related MDS/AML or indicate disease progression.
Chromosome Aberrations
;
Chromosome Deletion
;
Chromosomes, Human, Pair 20
;
Clone Cells
;
Cytogenetics
;
Disease Progression
;
Follow-Up Studies
;
Humans
;
Karyotype
;
Latency Period (Psychology)
;
Leukemia
;
Recurrence
;
Retrospective Studies