1.L-histidine and L-carnosine exert anti-brain aging effects in D-galactose-induced aged neuronal cells
Nutrition Research and Practice 2020;14(3):188-202
BACKGROUND/OBJECTIVES:
Brain aging is a major risk factor for severe neurodegenerative diseases. Conversely, L-histidine and L-carnosine are known to exhibit neuroprotective effects. The aim of this study was to examine the potential for L-histidine, L-carnosine, and their combination to mediate anti-brain aging effects in neuronal cells subjected to D-galactose-induced aging.MATERIALS/METHODS: The neuroprotective potential of L-histidine, L-carnosine, and their combination was examined in a retinoic acid-induced neuronal differentiated SH-SY5Y cell line exposed to D-galactose (200 mM) for 48 h. Neuronal cell proliferation, differentiation, and expression of anti-oxidant enzymes and apoptosis markers were subsequently evaluated.
RESULTS:
Treatment with L-histidine (1 mM), L-carnosine (10 mM), or both for 48 h efficiently improved the proliferation, neurogenesis, and senescence of D-galactose-treated SH-SY5Y cells. In addition, protein expression levels of both neuronal markers (β tubulin-III and neurofilament heavy protein) and anti-oxidant enzymes, glutathione peroxidase-1 and superoxide dismutase-1 were up-regulated. Conversely, protein expression levels of amyloid β (1-42) and cleaved caspase-3 were down-regulated. Levels of mRNA for the pro-inflammatory cytokines, interleukin (IL)-8, IL-1β, and tumor necrosis factor-α were also down-regulated.
CONCLUSIONS
To the best of our knowledge, we provide the first evidence that L-histidine, L-carnosine, and their combination mediate anti-aging effects in a neuronal cell line subjected to D-galactose-induced aging. These results suggest the potential benefits of L-histidine and L-carnosine as anti-brain aging agents and they support further research of these amino acid molecules.
2.Effects of β-carotene on Expression of Selected MicroRNAs, Histone Acetylation, and DNA Methylation in Colon Cancer Stem Cells
Daeun KIM ; Yerin KIM ; Yuri KIM
Journal of Cancer Prevention 2019;24(4):224-232
BACKGROUND: Beta-carotene (BC) is a carotenoid which exerts anti-cancer effects in several types of cancer, including colorectal cancer. Epigenetic modifications of genes, such as histone deacetylation and DNA hypermethylation, have also been detected in various types of cancer. To understand the molecular mechanism underlying cancer preventive and therapeutic effects of BC, microRNAs (miRNAs), histone acetylation, and global DNA methylation in colon cancer stem cells (CSCs) were investigated.METHODS: HCT116 colon cancer cells positive for expression of CD44 and CD133 were sorted by flow cytometry and used in subsequent experiments. Cell proliferation was examined by the MTT assay and self-renewal capacity was analyzed by the sphere formation assay. The miRNA sequencing array was used to detect miRNAs regulated by BC. Histone acetylation levels were measured by the Western blot analysis. mRNA expression of DNA methyltransferases (DNMTs) was examined by qPCR and global DNA methylation levels were determined by enzyme-linked immunosorbent assay.RESULTS: Treatment of CD44⁺CD133⁺ colon CSCs with BC caused a reduction in both cell proliferation and sphere formation. Analysis of the miRNA sequencing array showed that BC regulated expression of miRNAs associated with histone acetylation. Histone H3 and H4 acetylation levels were elevated by BC treatment. In addition, BC treatment down-regulated DNMT3A mRNA expression and global DNA methylation in colon CSCs.CONCLUSIONS: These results suggest that BC regulates epigenetic modifications for its anti-cancer effects in colon CSCs.
Acetylation
;
beta Carotene
;
Blotting, Western
;
Cell Proliferation
;
Colon
;
Colonic Neoplasms
;
Colorectal Neoplasms
;
DNA Methylation
;
DNA
;
Enzyme-Linked Immunosorbent Assay
;
Epigenomics
;
Flow Cytometry
;
Histones
;
Methyltransferases
;
MicroRNAs
;
RNA, Messenger
;
Stem Cells
;
Therapeutic Uses
3.Curcumin and hesperetin attenuate D-galactose-induced brain senescence in vitro and in vivo
Jihye LEE ; Yoo Sun KIM ; Eunju KIM ; Yerin KIM ; Yuri KIM
Nutrition Research and Practice 2020;14(5):438-452
BACKGROUND/OBJECTIVES:
Brain senescence causes cognitive impairment and neurodegeneration. It has also been demonstrated that curcumin (Cur) and hesperetin (Hes), both antioxidant polyphenolic compounds, mediate anti-aging and neuroprotective effects. Therefore, the objective of this study was to investigate whether Cur, Hes, and/or their combination exert anti-aging effects in D-galactose (Dg)-induced aged neuronal cells and rats.MATERIALS/METHODS: SH-SY5Y cells differentiated in response to retinoic acid were treated with Cur (1 μM), Hes (1 μM), or a combination of both, followed by 300 mM Dg.Neuronal loss was subsequently evaluated by measuring average neurite length and analyzing expression of β-tubulin III, phosphorylated extracellular signal-regulated kinases, and neurofilament heavy polypeptide. Cellular senescence and related proteins, p16 and p21, were also investigated, including their regulation of antioxidant enzymes. In vivo, brain aging was induced by injecting 250 mg/kg body weight (b.w.) Dg. The effects of supplementing this model with 50 mg/kg b.w. Cur, 50 mg/kg b.w. Hes, or a combination of both for 3 months were subsequently evaluated. Brain aging was examined with a step-through passive avoidance test and apoptosis markers were analyzed in brain cortex tissues.
RESULTS:
Cur, Hes, and their combination improved neuron length and cellular senescence by decreasing the number of β-gal stained cells, down-regulated expression of p16 and p21, and up-regulated expression of antioxidant enzymes, including superoxide dismutase 1, glutathione peroxidase 1, and catalase. Administration of Cur, Hes, or their combination also tended to ameliorate cognitive impairment and suppress apoptosis in the cerebral cortex by downregulating Bax and poly (ADP-ribose) polymerase expression and increasing Bcl-2 expression.
CONCLUSIONS
Cur and Hes appear to attenuate Dg-induced brain aging via regulation of antioxidant enzymes and apoptosis. These results suggest that Cur and Hes may mediate neuroprotective effects in the aging process, and further study of these antioxidant polyphenolic compounds is warranted.
4.Bitter taste receptors protect against skin aging by inhibiting cellular senescence and enhancing wound healing
Min Gi CHUNG ; Yerin KIM ; Yeon Kyung CHA ; Tai Hyun PARK ; Yuri KIM
Nutrition Research and Practice 2022;16(1):1-13
BACKGROUND/OBJECTIVES:
Bitter taste receptors are taste signaling pathway mediators, and are also expressed and function in extra-gustatory organs. Skin aging affects the quality of life and may lead to medical issues. The purpose of this study was to better understand the anti-skin aging effects of bitter taste receptors in D-galactose (D-gal)-induced aged human keratinocytes, HaCaT cells.MATERIALS/METHODS: Expressions of bitter taste receptors in HaCaT cells and mouse skin tissues were examined by polymerase chain reaction assay. Bitter taste receptor was overexpressed in HaCaT cells, and D-gal was treated to induce aging. We examined the effects of bitter taste receptors on aging by using β-galactosidase assay, wound healing assay, and Western blot assay.
RESULTS:
TAS2R16 and TAS2R10 were expressed in HaCaT cells and were upregulated by D-gal treatment. TAS2R16 exerted protective effects against skin aging by regulating p53 and p21, antioxidant enzymes, the SIRT1/mechanistic target of rapamycin pathway, cell migration, and epithelial-mesenchymal transition markers. TAS2R10 was further examined to confirm a role of TAS2R16 in cellular senescence and wound healing in D-gal-induced aged HaCaT cells.
CONCLUSIONS
Our results suggest a novel potential preventive role of these receptors on skin aging by regulating cellular senescence and wound healing in human keratinocyte, HaCaT.
5.Umami taste receptor suppresses cancer cachexia by regulating skeletal muscle atrophy in vivo and in vitro
Sumin LEE ; Yoonha CHOI ; Yerin KIM ; Yeon Kyung CHA ; Tai Hyun PARK ; Yuri KIM
Nutrition Research and Practice 2024;18(4):451-463
BACKGROUND/OBJECTIVES:
The umami taste receptor (TAS1R1/TAS1R3) is endogenously expressed in skeletal muscle and is involved in myogenesis; however, there is a lack of evidence about whether the expression of the umami taste receptor is involved in muscular diseases. This study aimed to elucidate the effects of the umami taste receptor and its mechanism on muscle wasting in cancer cachexia using in vivo and in vitro models.MATERIALS/METHODS: The Lewis lung carcinoma-induced cancer cachexia model was used in vivo and in vitro, and the expressions of umami taste receptor and muscle atrophy-related markers, muscle atrophy F-box protein, and muscle RING-finger protein-1 were analyzed.
RESULTS:
Results showed that TAS1R1 was significantly downregulated in vivo and in vitro under the muscle wasting condition. Moreover, overexpression of TAS1R1 in vitro in the human primary cell model protected the cells from muscle atrophy, and knockdown of TAS1R1 using siRNA exacerbated muscle atrophy.
CONCLUSION
Taken together, the umami taste receptor exerts protective effects on muscle-wasting conditions by restoring dysregulated muscle atrophy in cancer cachexia. In conclusion, this result provided evidence that the umami taste receptor exerts a therapeutic anti-cancer cachexia effect by restoring muscle atrophy.
6.Efficacy of IFN-γ-Primed Umbilical Cord-Derived Mesenchymal Stem Cells on Temporomandibular Joint Osteoarthritis
Hyunjeong KIM ; Yerin KIM ; So-Yeon YUN ; Bu-Kyu LEE
Tissue Engineering and Regenerative Medicine 2024;21(3):473-486
BACKGROUND:
Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease affecting the cartilage and subchondral bone, leading to temporomandibular joint pain and dysfunction. The complex nature of TMJOA warrants effective alternative treatments, and mesenchymal stem cells (MSCs) have shown promise in regenerative therapies. The aim of this study is twofold: firstly, to ascertain the optimal interferon-gamma (IFN-γ)-primed MSC cell line for TMJOA treatment, and secondly, to comprehensively evaluate the therapeutic efficacy of IFN-γ-primed mesenchymal stem cells derived from the human umbilical cord matrix in a rat model of TMJOA.
METHODS:
We analyzed changes in the expression of several key genes associated with OA protection in MSC-secreted compounds. Following this, we performed co-culture experiments using a transwell system to predict gene expression changes in primed MSCs in the TMJOA environment. Subsequently, we investigated the efficacy of the selected IFN-γ-primed human umbilical cord matrix-derived MSCs (hUCM-MSCs) for TMJOA treatment in a rat model.
RESULTS:
IFN-γ-primed MSCs exhibited enhanced expression of IDO, TSG-6, and FGF-2. Moreover, co-culturing with rat OA chondrocytes induced a decrease in pro-inflammatory and extracellular matrix degradation factors. In the rat TMJOA model, IFN-γ-primed MSCs with elevated IDO1, TSG-6, and FGF2 expression exhibited robust anti-inflammatory and therapeutic capacities, promoting the improvement of the inflammatory environment and cartilage regeneration.
CONCLUSION
These findings underscore the importance of prioritizing the mitigation of the inflammatory milieu in TMJOA treatment and highlight IFN-γ-primed MSCs secreting these three factors as a promising, comprehensive therapeutic strategy.
7.Umami taste receptor suppresses cancer cachexia by regulating skeletal muscle atrophy in vivo and in vitro
Sumin LEE ; Yoonha CHOI ; Yerin KIM ; Yeon Kyung CHA ; Tai Hyun PARK ; Yuri KIM
Nutrition Research and Practice 2024;18(4):451-463
BACKGROUND/OBJECTIVES:
The umami taste receptor (TAS1R1/TAS1R3) is endogenously expressed in skeletal muscle and is involved in myogenesis; however, there is a lack of evidence about whether the expression of the umami taste receptor is involved in muscular diseases. This study aimed to elucidate the effects of the umami taste receptor and its mechanism on muscle wasting in cancer cachexia using in vivo and in vitro models.MATERIALS/METHODS: The Lewis lung carcinoma-induced cancer cachexia model was used in vivo and in vitro, and the expressions of umami taste receptor and muscle atrophy-related markers, muscle atrophy F-box protein, and muscle RING-finger protein-1 were analyzed.
RESULTS:
Results showed that TAS1R1 was significantly downregulated in vivo and in vitro under the muscle wasting condition. Moreover, overexpression of TAS1R1 in vitro in the human primary cell model protected the cells from muscle atrophy, and knockdown of TAS1R1 using siRNA exacerbated muscle atrophy.
CONCLUSION
Taken together, the umami taste receptor exerts protective effects on muscle-wasting conditions by restoring dysregulated muscle atrophy in cancer cachexia. In conclusion, this result provided evidence that the umami taste receptor exerts a therapeutic anti-cancer cachexia effect by restoring muscle atrophy.
8.Umami taste receptor suppresses cancer cachexia by regulating skeletal muscle atrophy in vivo and in vitro
Sumin LEE ; Yoonha CHOI ; Yerin KIM ; Yeon Kyung CHA ; Tai Hyun PARK ; Yuri KIM
Nutrition Research and Practice 2024;18(4):451-463
BACKGROUND/OBJECTIVES:
The umami taste receptor (TAS1R1/TAS1R3) is endogenously expressed in skeletal muscle and is involved in myogenesis; however, there is a lack of evidence about whether the expression of the umami taste receptor is involved in muscular diseases. This study aimed to elucidate the effects of the umami taste receptor and its mechanism on muscle wasting in cancer cachexia using in vivo and in vitro models.MATERIALS/METHODS: The Lewis lung carcinoma-induced cancer cachexia model was used in vivo and in vitro, and the expressions of umami taste receptor and muscle atrophy-related markers, muscle atrophy F-box protein, and muscle RING-finger protein-1 were analyzed.
RESULTS:
Results showed that TAS1R1 was significantly downregulated in vivo and in vitro under the muscle wasting condition. Moreover, overexpression of TAS1R1 in vitro in the human primary cell model protected the cells from muscle atrophy, and knockdown of TAS1R1 using siRNA exacerbated muscle atrophy.
CONCLUSION
Taken together, the umami taste receptor exerts protective effects on muscle-wasting conditions by restoring dysregulated muscle atrophy in cancer cachexia. In conclusion, this result provided evidence that the umami taste receptor exerts a therapeutic anti-cancer cachexia effect by restoring muscle atrophy.
9.Umami taste receptor suppresses cancer cachexia by regulating skeletal muscle atrophy in vivo and in vitro
Sumin LEE ; Yoonha CHOI ; Yerin KIM ; Yeon Kyung CHA ; Tai Hyun PARK ; Yuri KIM
Nutrition Research and Practice 2024;18(4):451-463
BACKGROUND/OBJECTIVES:
The umami taste receptor (TAS1R1/TAS1R3) is endogenously expressed in skeletal muscle and is involved in myogenesis; however, there is a lack of evidence about whether the expression of the umami taste receptor is involved in muscular diseases. This study aimed to elucidate the effects of the umami taste receptor and its mechanism on muscle wasting in cancer cachexia using in vivo and in vitro models.MATERIALS/METHODS: The Lewis lung carcinoma-induced cancer cachexia model was used in vivo and in vitro, and the expressions of umami taste receptor and muscle atrophy-related markers, muscle atrophy F-box protein, and muscle RING-finger protein-1 were analyzed.
RESULTS:
Results showed that TAS1R1 was significantly downregulated in vivo and in vitro under the muscle wasting condition. Moreover, overexpression of TAS1R1 in vitro in the human primary cell model protected the cells from muscle atrophy, and knockdown of TAS1R1 using siRNA exacerbated muscle atrophy.
CONCLUSION
Taken together, the umami taste receptor exerts protective effects on muscle-wasting conditions by restoring dysregulated muscle atrophy in cancer cachexia. In conclusion, this result provided evidence that the umami taste receptor exerts a therapeutic anti-cancer cachexia effect by restoring muscle atrophy.
10.Inhalation risk assessment of naphthalene emitted from deodorant balls in public toilets
Yerin JUNG ; Pil Gon KIM ; Jung Hwan KWON
Environmental Health and Toxicology 2019;34(1):e2019005-
The inhalation of naphthalene used as deodorant balls in public toilets could be an important cancer risk factor. The atmospheric concentration of naphthalene in public toilets (C(in)) was estimated both by a polyurethane foam passive air sampler (PUF-PAS) deployed in nine public toilets in Seoul, Korea and by a steady-state indoor air quality model, including emission estimation using Monte-Carlo simulation. Based on the estimated C(in), cancer risk was also assessed for cleaning workers and the general population. The steady-state C(in) estimated using the estimated emission rate, which assumed that air exchange was the only process by which naphthalene was removed, was much greater than the C(in) value measured using PUF-PAS in nine public toilets, implying the importance of other removal processes, such as sorption to walls and the garments of visitors, as well as decreased emission rate owing to wetting of the naphthalene ball surface. The 95 percentile values of cancer risk for workers based on the estimation by PUF-PAS was 1.6×10⁻⁶, whereas those for the general public were lower than 1×10⁻⁶. The results suggested that naphthalene deodorant balls in public toilets may be an important cancer risk factor especially for the cleaning workers.
Air Pollution, Indoor
;
Clothing
;
Deodorants
;
Inhalation Exposure
;
Inhalation
;
Korea
;
Polyurethanes
;
Risk Assessment
;
Risk Factors
;
Seoul