1.Diagnostic Accuracy of a Novel On-site Virtual Fractional Flow Reserve Parallel Computing System
Hyung Bok PARK ; Yeonggul JANG ; Reza ARSANJANI ; Minh Tuan NGUYEN ; Sang Eun LEE ; Byunghwan JEON ; Sunghee JUNG ; Youngtaek HONG ; Seongmin HA ; Sekeun KIM ; Sang Wook LEE ; Hyuk Jae CHANG
Yonsei Medical Journal 2020;61(2):137-144
2.Assessment of Image Quality for Selective Intracoronary Contrast-Injected CT Angiography in a Hybrid Angio-CT System: A Feasibility Study in Swine
Seongmin HA ; Sunghee JUNG ; Hyung-Bok PARK ; Sanghoon SHIN ; Reza ARSANJANI ; Youngtaek HONG ; Byoung Kwon LEE ; Yeonggul JANG ; Byunghwan JEON ; Se-Il PARK ; Hackjoon SHIM ; Hyuk-Jae CHANG
Yonsei Medical Journal 2021;62(3):200-208
Purpose:
To compare image quality in selective intracoronary contrast-injected computed tomography angiography (SelectiveCTA) with that in conventional intravenous contrast-injected CTA (IV-CTA).
Materials and Methods:
Six pigs (35 to 40 kg) underwent both IV-CTA using an intravenous injection (60 mL) and Selective-CTA using an intracoronary injection (20 mL) through a guide-wire during/after percutaneous coronary intervention. Images of the common coronary artery were acquired. Scans were performed using a combined machine comprising an invasive coronary angiography suite and a 320-channel multi-slice CT scanner. Quantitative image quality parameters of CT attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), mean lumen diameter (MLD), and mean lumen area (MLA) were measured and compared. Qualitative analysis was performed using intraclass correlation coefficient (ICC), which was calculated for analysis of interobserver agreement.
Results:
Quantitative image quality, determined by assessing the uniformity of CT attenuation (399.06 vs. 330.21, p<0.001), image noise (24.93 vs. 18.43, p<0.001), SNR (16.43 vs. 18.52, p=0.005), and CNR (11.56 vs. 13.46, p=0.002), differed significantly between IV-CTA and Selective-CTA. MLD and MLA showed no significant difference overall (2.38 vs. 2.44, p=0.068, 4.72 vs. 4.95, p=0.078).The density of contrast agent was significantly lower for selective-CTA (13.13 mg/mL) than for IV-CTA (400 mg/mL). Agreement between observers was acceptable (ICC=0.79±0.08).
Conclusion
Our feasibility study in swine showed that compared to IV-CTA, Selective-CTA provides better image quality and requires less iodine contrast medium.
3.Simultaneous Viability Assessment and Invasive Coronary Angiography Using a Therapeutic CT System in Chronic Myocardial Infarction Patients
Seongmin HA ; Yeonggul JANG ; Byoung Kwon LEE ; Youngtaek HONG ; Byeong-Keuk KIM ; Seil PARK ; Sun Kook YOO ; Hyuk-Jae CHANG
Yonsei Medical Journal 2024;65(5):257-264
Purpose:
In a preclinical study using a swine myocardial infarction (MI) model, a delayed enhancement (DE)-multi-detector computed tomography (MDCT) scan was performed using a hybrid system alongside diagnostic invasive coronary angiography (ICA) without the additional use of a contrast agent, and demonstrated an excellent correlation in the infarct area compared with histopathologic specimens. In the present investigation, we evaluated the feasibility and diagnostic accuracy of a myocardial viability assessment by DE-MDCT using a hybrid system comprising ICA and MDCT alongside diagnostic ICA without the additional use of a contrast agent.
Materials and Methods:
We prospectively enrolled 13 patients (median age: 67 years) with a previous MI (>6 months) scheduled to undergo ICA. All patients underwent cardiac magnetic resonance (CMR) imaging before diagnostic ICA. MDCT viability scans were performed concurrently with diagnostic ICA without the use of additional contrast. The total myocardial scar volume per patient and average transmurality per myocardial segment measured by DE-MDCT were compared with those from DE-CMR.
Results:
The DE volume measured by MDCT showed an excellent correlation with the volume measured by CMR (r=0.986, p<0.0001). The transmurality per segment by MDCT was well-correlated with CMR (r=0.900, p<0.0001); the diagnostic performance of MDCT in differentiating non-viable from viable myocardium using a 50% transmurality criterion was good with a sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 87.5%, 99.5%, 87.5%, 99.5%, and 99.1%, respectively.
Conclusion
The feasibility of the DE-MDCT viability assessment acquired simultaneously with conventional ICA was proven in patients with chronic MI using DE-CMR as the reference standard.
4.An Artificial Intelligence-Based Automated Echocardiographic Analysis: Enhancing Efficiency and Prognostic Evaluation in Patients With Revascularized STEMI
Yeonggul JANG ; Hyejung CHOI ; Yeonyee E. YOON ; Jaeik JEON ; Hyejin KIM ; Jiyeon KIM ; Dawun JEONG ; Seongmin HA ; Youngtaek HONG ; Seung-Ah LEE ; Jiesuck PARK ; Wonsuk CHOI ; Hong-Mi CHOI ; In-Chang HWANG ; Goo-Yeong CHO ; Hyuk-Jae CHANG
Korean Circulation Journal 2024;54(11):743-756
Background and Objectives:
Although various cardiac parameters on echocardiography have clinical importance, their measurement by conventional manual methods is time-consuming and subject to variability. We evaluated the feasibility, accuracy, and predictive value of an artificial intelligence (AI)-based automated system for echocardiographic analysis in patients with ST-segment elevation myocardial infarction (STEMI).
Methods:
The AI-based system was developed using a nationwide echocardiographic dataset from five tertiary hospitals, and automatically identified views, then segmented and tracked the left ventricle (LV) and left atrium (LA) to produce volume and strain values. Both conventional manual measurements and AI-based fully automated measurements of the LV ejection fraction and global longitudinal strain, and LA volume index and reservoir strain were performed in 632 patients with STEMI.
Results:
The AI-based system accurately identified necessary views (overall accuracy, 98.5%) and successfully measured LV and LA volumes and strains in all cases in which conventional methods were applicable. Inter-method analysis showed strong correlations between measurement methods, with Pearson coefficients ranging 0.81–0.92 and intraclass correlation coefficients ranging 0.74–0.90. For the prediction of clinical outcomes (composite of all-cause death, re-hospitalization due to heart failure, ventricular arrhythmia, and recurrent myocardial infarction), AI-derived measurements showed predictive value independent of clinical risk factors, comparable to those from conventional manual measurements.
Conclusions
Our fully automated AI-based approach for LV and LA analysis on echocardiography is feasible and provides accurate measurements, comparable to conventional methods, in patients with STEMI, offering a promising solution for comprehensive echocardiographic analysis, reduced workloads, and improved patient care.
5.An Artificial Intelligence-Based Automated Echocardiographic Analysis: Enhancing Efficiency and Prognostic Evaluation in Patients With Revascularized STEMI
Yeonggul JANG ; Hyejung CHOI ; Yeonyee E. YOON ; Jaeik JEON ; Hyejin KIM ; Jiyeon KIM ; Dawun JEONG ; Seongmin HA ; Youngtaek HONG ; Seung-Ah LEE ; Jiesuck PARK ; Wonsuk CHOI ; Hong-Mi CHOI ; In-Chang HWANG ; Goo-Yeong CHO ; Hyuk-Jae CHANG
Korean Circulation Journal 2024;54(11):743-756
Background and Objectives:
Although various cardiac parameters on echocardiography have clinical importance, their measurement by conventional manual methods is time-consuming and subject to variability. We evaluated the feasibility, accuracy, and predictive value of an artificial intelligence (AI)-based automated system for echocardiographic analysis in patients with ST-segment elevation myocardial infarction (STEMI).
Methods:
The AI-based system was developed using a nationwide echocardiographic dataset from five tertiary hospitals, and automatically identified views, then segmented and tracked the left ventricle (LV) and left atrium (LA) to produce volume and strain values. Both conventional manual measurements and AI-based fully automated measurements of the LV ejection fraction and global longitudinal strain, and LA volume index and reservoir strain were performed in 632 patients with STEMI.
Results:
The AI-based system accurately identified necessary views (overall accuracy, 98.5%) and successfully measured LV and LA volumes and strains in all cases in which conventional methods were applicable. Inter-method analysis showed strong correlations between measurement methods, with Pearson coefficients ranging 0.81–0.92 and intraclass correlation coefficients ranging 0.74–0.90. For the prediction of clinical outcomes (composite of all-cause death, re-hospitalization due to heart failure, ventricular arrhythmia, and recurrent myocardial infarction), AI-derived measurements showed predictive value independent of clinical risk factors, comparable to those from conventional manual measurements.
Conclusions
Our fully automated AI-based approach for LV and LA analysis on echocardiography is feasible and provides accurate measurements, comparable to conventional methods, in patients with STEMI, offering a promising solution for comprehensive echocardiographic analysis, reduced workloads, and improved patient care.
6.An Artificial Intelligence-Based Automated Echocardiographic Analysis: Enhancing Efficiency and Prognostic Evaluation in Patients With Revascularized STEMI
Yeonggul JANG ; Hyejung CHOI ; Yeonyee E. YOON ; Jaeik JEON ; Hyejin KIM ; Jiyeon KIM ; Dawun JEONG ; Seongmin HA ; Youngtaek HONG ; Seung-Ah LEE ; Jiesuck PARK ; Wonsuk CHOI ; Hong-Mi CHOI ; In-Chang HWANG ; Goo-Yeong CHO ; Hyuk-Jae CHANG
Korean Circulation Journal 2024;54(11):743-756
Background and Objectives:
Although various cardiac parameters on echocardiography have clinical importance, their measurement by conventional manual methods is time-consuming and subject to variability. We evaluated the feasibility, accuracy, and predictive value of an artificial intelligence (AI)-based automated system for echocardiographic analysis in patients with ST-segment elevation myocardial infarction (STEMI).
Methods:
The AI-based system was developed using a nationwide echocardiographic dataset from five tertiary hospitals, and automatically identified views, then segmented and tracked the left ventricle (LV) and left atrium (LA) to produce volume and strain values. Both conventional manual measurements and AI-based fully automated measurements of the LV ejection fraction and global longitudinal strain, and LA volume index and reservoir strain were performed in 632 patients with STEMI.
Results:
The AI-based system accurately identified necessary views (overall accuracy, 98.5%) and successfully measured LV and LA volumes and strains in all cases in which conventional methods were applicable. Inter-method analysis showed strong correlations between measurement methods, with Pearson coefficients ranging 0.81–0.92 and intraclass correlation coefficients ranging 0.74–0.90. For the prediction of clinical outcomes (composite of all-cause death, re-hospitalization due to heart failure, ventricular arrhythmia, and recurrent myocardial infarction), AI-derived measurements showed predictive value independent of clinical risk factors, comparable to those from conventional manual measurements.
Conclusions
Our fully automated AI-based approach for LV and LA analysis on echocardiography is feasible and provides accurate measurements, comparable to conventional methods, in patients with STEMI, offering a promising solution for comprehensive echocardiographic analysis, reduced workloads, and improved patient care.
7.An Artificial Intelligence-Based Automated Echocardiographic Analysis: Enhancing Efficiency and Prognostic Evaluation in Patients With Revascularized STEMI
Yeonggul JANG ; Hyejung CHOI ; Yeonyee E. YOON ; Jaeik JEON ; Hyejin KIM ; Jiyeon KIM ; Dawun JEONG ; Seongmin HA ; Youngtaek HONG ; Seung-Ah LEE ; Jiesuck PARK ; Wonsuk CHOI ; Hong-Mi CHOI ; In-Chang HWANG ; Goo-Yeong CHO ; Hyuk-Jae CHANG
Korean Circulation Journal 2024;54(11):743-756
Background and Objectives:
Although various cardiac parameters on echocardiography have clinical importance, their measurement by conventional manual methods is time-consuming and subject to variability. We evaluated the feasibility, accuracy, and predictive value of an artificial intelligence (AI)-based automated system for echocardiographic analysis in patients with ST-segment elevation myocardial infarction (STEMI).
Methods:
The AI-based system was developed using a nationwide echocardiographic dataset from five tertiary hospitals, and automatically identified views, then segmented and tracked the left ventricle (LV) and left atrium (LA) to produce volume and strain values. Both conventional manual measurements and AI-based fully automated measurements of the LV ejection fraction and global longitudinal strain, and LA volume index and reservoir strain were performed in 632 patients with STEMI.
Results:
The AI-based system accurately identified necessary views (overall accuracy, 98.5%) and successfully measured LV and LA volumes and strains in all cases in which conventional methods were applicable. Inter-method analysis showed strong correlations between measurement methods, with Pearson coefficients ranging 0.81–0.92 and intraclass correlation coefficients ranging 0.74–0.90. For the prediction of clinical outcomes (composite of all-cause death, re-hospitalization due to heart failure, ventricular arrhythmia, and recurrent myocardial infarction), AI-derived measurements showed predictive value independent of clinical risk factors, comparable to those from conventional manual measurements.
Conclusions
Our fully automated AI-based approach for LV and LA analysis on echocardiography is feasible and provides accurate measurements, comparable to conventional methods, in patients with STEMI, offering a promising solution for comprehensive echocardiographic analysis, reduced workloads, and improved patient care.