1.Expression Levels of GABA-A Receptor Subunit Alpha 3, Gabra3 and Lipoprotein Lipase, Lpl Are Associated with the Susceptibility to Acetaminophen-Induced Hepatotoxicity.
Minjeong KIM ; Jun Won YUN ; Kyeho SHIN ; Yejin CHO ; Mijeong YANG ; Ki Taek NAM ; Kyung Min LIM
Biomolecules & Therapeutics 2017;25(2):112-121
Drug-induced liver injury (DILI) is the serious and fatal drug-associated adverse effect, but its incidence is very low and individual variation in severity is substantial. Acetaminophen (APAP)-induced liver injury accounts for >50% of reported DILI cases but little is known for the cause of individual variations in the severity. Intrinsic genetic variation is considered a key element but the identity of the genes was not well-established. Here, pre-biopsy method and microarray technique was applied to uncover the key genes for APAP-induced liver injury in mice, and a cause and effect experiment employing quantitative real-time PCR was conducted to confirm the correlation between the uncovered genes and APAP-induced hepatotoxicity. We identified the innately and differentially expressed genes of mice susceptible to APAP-induced hepatotoxicity in the pre-biopsied liver tissue before APAP treatment through microarray analysis of the global gene expression profiles (Affymetrix GeneChip® Mouse Gene 1.0 ST for 28,853 genes). Expression of 16 genes including Gdap10, Lpl, Gabra3 and Ccrn4l were significantly different (t-test: FDR <10%) more than 1.5 fold in the susceptible animals than resistant. To confirm the association with the susceptibility to APAP-induced hepatotoxicity, another set of animals were measured for the expression level of selected 4 genes (higher two and lower two genes) in the liver pre-biopsy and their sensitivity to APAP-induced hepatotoxicity was evaluated by post hoc. Notably, the expressions of Gabra3 and Lpl were significantly correlated with the severity of liver injury (p<0.05) demonstrating that these genes may be linked to the susceptibility to APAP-induced hepatotoxicity.
Acetaminophen
;
Animals
;
Drug-Induced Liver Injury
;
Genetic Variation
;
Incidence
;
Lipoprotein Lipase*
;
Lipoproteins*
;
Liver
;
Methods
;
Mice
;
Microarray Analysis
;
Real-Time Polymerase Chain Reaction
;
Receptors, GABA-A*
;
Toxicogenetics
;
Transcriptome
2.Molecular mechanisms of hederagenin in bone formation
Hyun-Ju SEO ; In-Sook KWUN ; Jaehee KWON ; Yejin SIM ; Young-Eun CHO
Journal of Nutrition and Health 2022;55(6):617-629
Purpose:
Osteoporosis is characterized by structural deterioration of the bone tissue because of the loss of osteoblastic activity or the increase in osteoclastic activity, resulting in bone fragility and an increased risk of fractures. Hederagenin (Hed) is a pentacyclic triterpenoid saponin isolated from Dipsaci Radix, the dried root of Dipsacus asper Wall. Dipsaci Radix has been used in Korean herbal medicine to treat bone fractures. In this study, we attempted to demonstrate the potential anti-osteoporotic effect of Hed by examining its effect on osteoblast differentiation in MC3T3-E1 cells.
Methods:
Osteoblastic MC3T3-E1 cells were cultured in 0, 1, and 10 μg/mL Hed for 3 and 7 days. The activity of alkaline phosphatase (ALP), bone nodule formation and level of expression of bone-related genes and proteins were measured in MC3T3-E1 cells exposed to Hed. The western blot test was used to detect the activation of the bone morphogenetic protein-2 (BMP2)/ Suppressor of Mothers against Decapentaplegic (SMAD)1 pathway.
Results:
Hed significantly increased the proliferation of MC3T3-E1 cells. Intracellular ALP activity was significantly increased in the 1 μg/mL Hed-treated group. Hed significantly increased the concentration of calcified nodules. Furthermore, Hed significantly upregulated the expression of genes and proteins associated with osteoblast proliferation and differentiation, such as Runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN), and type I procollagen (ProCOL1). Induction of osteoblast differentiation by Hed was associated with increased BMP2. In addition, Hed induced osteoblast differentiation by increasing the activity of SMAD1/5/8. These results suggest that Hed has the potential to prevent osteoporosis by promoting osteoblastogenesis in osteoblastic MC3T3-E1 cells via the modulation of the BMP2/SMAD1 pathway.
Conclusion
The results presented in this study indicate that Hed isolated from Dipsaci Radix has the potential to be developed as a healthcare food and functional material possessing anti-osteoporosis effects.
3.Preeclampsia Increases the Incidence of Postpartum Cerebrovascular Disease in Korean Population
Yejin PARK ; Geum Joon CHO ; Log Young KIM ; Tae Seon LEE ; Min Jeong OH ; Young Han KIM
Journal of Korean Medical Science 2018;33(6):e35-
BACKGROUND: Multiple studies have been reported regarding preeclampsia as a possible risk factor of cerebrovascular disease (CVD). However, the correlation of preeclampsia and CVD, whether it is a cause-effect relationship or they are sharing common predisposing condition, is not well understood. Therefore, the aim of this study was to investigate the association between the preeclampsia during pregnancy and development of postpartum CVD. METHODS: A total of 1,384,550 Korean women who had a delivery between January 1, 2010 and December 31, 2012, were enrolled. Women with the risk of CVD within 1 year prior to pregnancy were excluded based on the Charlson comorbidity index. Primary endpoint was the event of CVD within a year from delivery. After exclusion, 1,075,061 women were analyzed. RESULTS: During the follow-up of 1 year postpartum, there were 25,577 preeclampsia out of 1,072,041 women without postpartum CVD (2.39%), and 121 of 3,020 women with postpartum CVD had preeclampsia before delivery (4.01%). In multivariate logistic regression analysis, women who had preeclampsia during pregnancy showed a higher risk for postpartum CVD (odds ratio, 1.64; 95% confidence interval, 1.37–1.98). CONCLUSION: The incidence of CVD after delivery was higher in women who had preeclampsia during pregnancy.
Cerebrovascular Disorders
;
Comorbidity
;
Female
;
Follow-Up Studies
;
Humans
;
Incidence
;
Insurance Claim Reporting
;
Korea
;
Logistic Models
;
Postpartum Period
;
Pre-Eclampsia
;
Pregnancy
;
Risk Factors
4.Cerebrospinal fluid flow in normal beagle dogs analyzed using magnetic resonance imaging
Hyunju CHO ; Yejin KIM ; Saebyel HONG ; Hojung CHOI
Journal of Veterinary Science 2021;22(1):e2-
Background:
Diseases related to cerebrospinal fluid flow, such as hydrocephalus, syringomyelia, and Chiari malformation, are often found in small dogs. Although studies in human medicine have revealed a correlation with cerebrospinal fluid flow in these diseases by magnetic resonance imaging, there is little information and no standard data for normal dogs.
Objectives:
The purpose of this study was to obtain cerebrospinal fluid flow velocity data from the cerebral aqueduct and subarachnoid space at the foramen magnum in healthy beagle dogs.
Methods:
Six healthy beagle dogs were used in this experimental study. The dogs underwent phase-contrast and time-spatial labeling inversion pulse magnetic resonance imaging. Flow rate variations in the cerebrospinal fluid were observed using sagittal time-spatial labeling inversion pulse images. The pattern and velocity of cerebrospinal fluid flow were assessed using phase-contrast magnetic resonance imaging within the subarachnoid space at the foramen magnum level and the cerebral aqueduct.
Results:
In the ventral aspect of the subarachnoid space and cerebral aqueduct, the cerebrospinal fluid was characterized by a bidirectional flow throughout the cardiac cycle. The mean ± SD peak velocities through the ventral and dorsal aspects of the subarachnoid space and the cerebral aqueduct were 1.39 ± 0.13, 0.32 ± 0.12, and 0.76 ± 0.43 cm/s, respectively.
Conclusions
Noninvasive visualization of cerebrospinal fluid flow movement with magnetic resonance imaging was feasible, and a reference dataset of cerebrospinal fluid flow peak velocities was obtained through the cervical subarachnoid space and cerebral aqueduct in healthy dogs.
5.A machine-learning expert-supporting system for diagnosis prediction of lymphoid neoplasms using a probabilistic decision-tree algorithm and immunohistochemistry profile database
Yosep CHONG ; Ji Young LEE ; Yejin KIM ; Jingyun CHOI ; Hwanjo YU ; Gyeongsin PARK ; Mee Yon CHO ; Nishant THAKUR
Journal of Pathology and Translational Medicine 2020;54(6):462-470
Background:
Immunohistochemistry (IHC) has played an essential role in the diagnosis of hematolymphoid neoplasms. However, IHC interpretations can be challenging in daily practice, and exponentially expanding volumes of IHC data are making the task increasingly difficult. We therefore developed a machine-learning expert-supporting system for diagnosing lymphoid neoplasms.
Methods:
A probabilistic decision-tree algorithm based on the Bayesian theorem was used to develop mobile application software for iOS and Android platforms. We tested the software with real data from 602 training and 392 validation cases of lymphoid neoplasms and compared the precision hit rates between the training and validation datasets.
Results:
IHC expression data for 150 lymphoid neoplasms and 584 antibodies was gathered. The precision hit rates of 94.7% in the training data and 95.7% in the validation data for lymphomas were not statistically significant. Results in most B-cell lymphomas were excellent, and generally equivalent performance was seen in T-cell lymphomas. The primary reasons for lack of precision were atypical IHC profiles for certain cases (e.g., CD15-negative Hodgkin lymphoma), a lack of disease-specific markers, and overlapping IHC profiles of similar diseases.
Conclusions
Application of the machine-learning algorithm to diagnosis precision produced acceptable hit rates in training and validation datasets. Because of the lack of origin- or disease- specific markers in differential diagnosis, contextual information such as clinical and histological features should be taken into account to make proper use of this system in the pathologic decision-making process.
6.Enrichment of Short-Chain Ceramides and Free Fatty Acids in the Skin Epidermis, Liver, and Kidneys of db/db Mice, a Type 2 Diabetes Mellitus Model
Minjeong KIM ; Haengdueng JEONG ; Buhyun LEE ; Yejin CHO ; Won Kee YOON ; Ahreum CHO ; Guideock KWON ; Ki Taek NAM ; Hunjoo HA ; Kyung Min LIM
Biomolecules & Therapeutics 2019;27(5):457-465
Patients with diabetes mellitus (DM) often suffer from diverse skin disorders, which might be attributable to skin barrier dysfunction. To explore the role of lipid alterations in the epidermis in DM skin disorders, we quantitated 49 lipids (34 ceramides, 14 free fatty acids (FFAs), and cholesterol) in the skin epidermis, liver, and kidneys of db/db mice, a Type 2 DM model, using UPLC-MS/MS. The expression of genes involved in lipid synthesis was also evaluated. With the full establishment of hyperglycemia at the age of 20 weeks, remarkable lipid enrichment was noted in the skin of the db/db mice, especially at the epidermis and subcutaneous fat bed. Prominent increases in the ceramides and FFAs (>3 fold) with short or medium chains (
7.Current status of infrastructures of obstetrics and gynecology in South Korea.
Yejin PARK ; Hee Young CHO ; Ga Won YIM ; Sang Wun KIM ; Young Tae KIM ; Yong Won PARK
Obstetrics & Gynecology Science 2015;58(5):435-437
No abstract available.
Gynecology*
;
Korea*
;
Obstetrics*
8.Vitamin C Up-regulates Expression of CD80, CD86 and MHC Class II on Dendritic Cell Line, DC-1 Via the Activation of p38 MAPK.
Hyung Woo KIM ; Su In CHO ; Seyeon BAE ; Hyemin KIM ; Yejin KIM ; Young Il HWANG ; Jae Seung KANG ; Wang Jae LEE
Immune Network 2012;12(6):277-283
Vitamin C is an essential water-soluble nutrient which primarily exerts its effect on host defense mechanisms and immune homeostasis, but the mechanism related to immune-potentiation is poorly understood. Since dendritic cells (DCs) are known as a potent antigen presenting cell (APC) that could enhance the antigen specific immune responses, we investigate the effects of vitamin C on activation of DCs and its related mechanism by using dendritic cell lines, DC-1. First, we found that there was no damage on DC-1 by 2.5 mM of vitamin C. In the presence of vitamin C, the expression of CD80, CD86, and MHC molecules was increased, but it was decreased by the pre-treatment of SB203580, p38 MAPK-specific inhibitor. We confirmed the phosphorylation of p38 MAPK was increased by the treatment of vitamin C. Taken together, these results suggest that vitamin C could enhance the activity of dendritic cells via the up-regulation of the expression of CD80, CD86, and MHC molecules and the activation of p38 MAPK is related to this process.
Ascorbic Acid
;
Defense Mechanisms
;
Dendritic Cells
;
Homeostasis
;
Imidazoles
;
p38 Mitogen-Activated Protein Kinases
;
Phosphorylation
;
Pyridines
;
Up-Regulation
;
Vitamins
9.Disruption of the Tff1 gene in mice using CRISPR/Cas9 promotes body weight reduction and gastric tumorigenesis.
Hyejeong KIM ; Haengdueng JEONG ; Yejin CHO ; Jaehoon LEE ; Ki Taek NAM ; Han Woong LEE
Laboratory Animal Research 2018;34(4):257-263
Trefoil factor 1 (TFF1, also known as pS2) is strongly expressed in the gastrointestinal mucosa and plays a critical role in the differentiation of gastric glands. Since approximately 50% of all human gastric cancers are associated with decreased TFF1 expression, it is considered a tumor suppressor gene. TFF1 deficiency in mice results in histological changes in the antral and pyloric gastric mucosa, with severe hyperplasia and dysplasia of epithelial cells, resulting in the development of antropyloric adenoma. Here, we generated TFF1-knockout (KO) mice, without a neomycin resistant (NeoR) cassette, using the clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (CRSIPR/Cas9) system. Though our TFF1-KO mice showed phenotypes very similar to the previous embryonic stem (ES)-cell-based KO mice, they differed from the previous reports in that a reduction in body weight was observed in males. These results demonstrate that these newly established TFF1-KO mice are useful tools for investigating genetic and environmental factors influencing gastric cancer, without the effects of artificial gene insertion. Furthermore, these findings suggest a novel hypothesis that TFF1 expression influences gender differences.
Adenoma
;
Animals
;
Body Weight*
;
Carcinogenesis*
;
Epithelial Cells
;
Gastric Mucosa
;
Genes, Synthetic
;
Genes, Tumor Suppressor
;
Humans
;
Hyperplasia
;
Lotus
;
Male
;
Mice*
;
Mucous Membrane
;
Neomycin
;
Phenotype
;
Stomach Neoplasms
10.A New Murine Liver Fibrosis Model Induced by Polyhexamethylene Guanidine-Phosphate
Minjeong KIM ; Sumin HUR ; Kwang H. KIM ; Yejin CHO ; Keunyoung KIM ; Ha Ryong KIM ; Ki Taek NAM ; Kyung-Min LIM
Biomolecules & Therapeutics 2022;30(2):126-136
Liver fibrosis is part of the wound healing process to help the liver recover from the injuries caused by various liver-damaging insults. However, liver fibrosis often progresses to life-threatening cirrhosis and hepatocellular carcinoma. To overcome the limitations of current in vivo liver fibrosis models for studying the pathophysiology of liver fibrosis and establishing effective treatment strategies, we developed a new mouse model of liver fibrosis using polyhexamethylene guanidine phosphate (PHMG-p), a humidifier sterilizer known to induce lung fibrosis in humans. Male C57/BL6 mice were intraperitoneally injected with PHMG-p (0.03% and 0.1%) twice a week for 5 weeks. Subsequently, liver tissues were examined histologically and RNA-sequencing was performed to evaluate the expression of key genes and pathways affected by PHMG-p. PHMG-p injection resulted in body weight loss of ~15% and worsening of physical condition. Necropsy revealed diffuse fibrotic lesions in the liver with no effect on the lungs. Histology, collagen staining, immunohistochemistry for smooth muscle actin and collagen, and polymerase chain reaction analysis of fibrotic genes revealed that PHMG-p induced liver fibrosis in the peri-central, peri-portal, and capsule regions. RNA-sequencing revealed that PHMG-p affected several pathways associated with human liver fibrosis, especially with upregulation of lumican and IRAK3, and downregulation of GSTp1 and GSTp2, which are closely involved in liver fibrosis pathogenesis. Collectively we demonstrated that the PHMG-p-induced liver fibrosis model can be employed to study human liver fibrosis.