1.Exploration of a new model for the construction of medical institution formulation platforms from the perspective of industry-university-research collaborative innovation theory
Kana LIN ; Anle SHEN ; Yejian WANG ; Yanqiong WANG ; Hao LI ; Yanfang GUO ; Youjun WANG ; Xinyan SUN
China Pharmacy 2026;37(2):137-141
OBJECTIVE To explore a model for constructing a platform for medical institution formulation and provide insights for promoting their development. METHODS By systematically reviewing the development status and challenges of medical institution preparations in China, and based on the theory of industry-university-research collaborative innovation, the organizational structure, collaborative processes, and safeguard mechanisms of the platform were designed. RESULTS & CONCLUSIONS Medical institution formulations in China mainly faced challenges such as weak research and development (R&D) capacity, uneven quality standards, and blocked transformation pathways. This study established a full-chain, whole- industry collaborative innovation network covering the government, medical institutions, universities/research institutes, pharmaceutical enterprises, and the market, forming a new “government-industry-university-research-application” five-in-one platform model for medical institution formulations. By establishing mechanisms such as multi-entity collaborative cooperation, full- chain intellectual property management, contribution-based benefit distribution, staged risk-sharing, and third-party evaluation, the model clarified the responsibilities and collaborative pathways of all parties. The new model highlights the whole-process transformation of clinical experience-based prescriptions, enabling precise alignment between clinical needs and technological R&D, as well as between preparation achievements and industrial transformation. While breaking down the barriers of traditional platform construction, it effectively achieves optimal resource allocation and complementary advantages, addresses problems emerging in the development of medical institution preparations, and provides reference value for the formulation of relevant systems.
2. Mechanism of Yi-xin-yin oral liquid according to homotherapy for heteropathy theory based on UHPLC-Q-TOF/MS combined with network pharmacology and molecular docking techniques
Yejian WANG ; Juan LI ; Weidong CHEN ; Feng ZHANG ; Yejian WANG ; Tao PANG ; Jie GAO ; Wansheng CHEN ; Feng ZHANG ; Guangyang JIAO ; Wansheng CHEN ; Nan WENG
Chinese Journal of Clinical Pharmacology and Therapeutics 2024;29(1):11-25
AIM: To predict the core targets and related signaling pathways of Yi-xin-yin oral liquid for the treatment of arrhythmia, heart failure and myocarditis based on UHPLC-Q-TOF/MS, network pharmacology, molecular docking methods, cell experiments, according to the“homotherapy for heteropathy”theory in traditional Chinese medicine. METHODS: UHPLC-Q-TOF / MS was used to analyze and identify the chemical composition of Yi-xin-yin oral liquid Extract and the blood-absorbing components of rats oral administrated with Yi-xin-yin oral liquid extract, which compounds were applied in the databases searching for the potential targets (TCMSP, SwissTargetPrediction) and disease targets (OMIM, Genecard). Venn diagram was used for target intersection, and the subsequent protein-protein interaction network obtained core targets by STRING11.5 database, and then construct a "disease-component-target" network by cytoscape3.9.0. Finally, DAVID database was used to analysis GO function and KEGG enrichment analysis of core targets, and molecular docking validation was performed using Autodock vina software. And, validated with H9c2 cells for potential active ingredients and targets. RESULTS: A total of 156 compounds were identified from Yi - xin-yin Oral Liquid extract; 34 compounds were identified from rat serum, including 6-gin-gerol, isoliquiritigenin, glycyrrhizic acid and other compounds, and 139 intersecting targets were obtained. The KEGG pathway enrichment analysis mainly involved the TNF signaling pathway, IL-17 signaling pathway, MAPK signaling pathway, PI3K-Akt signaling pathway and so on. The TNF and IL-6 targets were selected for molecular docking with the main compounds, and the docking results were good (less than -5 kcal/mol). In vitro cellular experiments have shown that Yi-xin-yin oral liquid can exert therapeutic effects by regulating TNF and IL-6. CONCLUSION: The main potential active ingredients of Yi-xin-yin oral liquid may be isoliquiritigenin, glycyrrhetinic acid, calycosin-7-glucoside, salvianolic acid B, and 6-gingerol, which mainly act on TNF, IL-6 and other targets to regulate specific signaling pathways and exert therapeutic effects.

Result Analysis
Print
Save
E-mail