1.AMPK activators: mechanisms of action and physiological activities.
Joungmok KIM ; Goowon YANG ; Yeji KIM ; Jin KIM ; Joohun HA
Experimental & Molecular Medicine 2016;48(4):e224-
AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, which coordinates metabolic pathways and thus balances nutrient supply with energy demand. Because of the favorable physiological outcomes of AMPK activation on metabolism, AMPK has been considered to be an important therapeutic target for controlling human diseases including metabolic syndrome and cancer. Thus, activators of AMPK may have potential as novel therapeutics for these diseases. In this review, we provide a comprehensive summary of both indirect and direct AMPK activators and their modes of action in relation to the structure of AMPK. We discuss the functional differences among isoform-specific AMPK complexes and their significance regarding the development of novel AMPK activators and the potential for combining different AMPK activators in the treatment of human disease.
AMP-Activated Protein Kinases*
;
Homeostasis
;
Humans
;
Metabolic Networks and Pathways
;
Metabolism
2.AMPK activators: mechanisms of action and physiological activities.
Joungmok KIM ; Goowon YANG ; Yeji KIM ; Jin KIM ; Joohun HA
Experimental & Molecular Medicine 2016;48(4):e224-
AMP-activated protein kinase (AMPK) is a central regulator of energy homeostasis, which coordinates metabolic pathways and thus balances nutrient supply with energy demand. Because of the favorable physiological outcomes of AMPK activation on metabolism, AMPK has been considered to be an important therapeutic target for controlling human diseases including metabolic syndrome and cancer. Thus, activators of AMPK may have potential as novel therapeutics for these diseases. In this review, we provide a comprehensive summary of both indirect and direct AMPK activators and their modes of action in relation to the structure of AMPK. We discuss the functional differences among isoform-specific AMPK complexes and their significance regarding the development of novel AMPK activators and the potential for combining different AMPK activators in the treatment of human disease.
AMP-Activated Protein Kinases*
;
Homeostasis
;
Humans
;
Metabolic Networks and Pathways
;
Metabolism
3.Relationship between seafood consumption and bisphenol A exposure: the Second Korean National Environmental Health Survey (KoNEHS 2012–2014)
Yeji KIM ; Minkyu PARK ; Do Jin NAM ; Eun Hye YANG ; Jae Hong RYOO
Annals of Occupational and Environmental Medicine 2020;32(1):10-
BACKGROUND: This study aimed to identify the relationship between exposure to bisphenol A (BPA) and seafood consumption using a nationally representative data of the general Korean population.METHODS: This study was conducted on 5,402 adults aged 19 years and older (2,488 men, 2,914 women) based on the second Korean National Environmental Health Survey (2012–2014). We stratified the data according to gender and analyzed urinary BPA concentrations in terms of sociodemographic characteristics, health behavior, dietary factor, and seafood consumption. In the high and low BPA exposure groups, the odds ratios (ORs) were calculated using logistic regression analysis according to the top 75th percentile concentration.RESULTS: In men, large fish and tuna and other seafood categories had significantly higher ORs before and after adjustment in the group who consumed seafood more than once a week than in the group who rarely consumed seafood, with an adjusted value of 1.97 (95% confidence interval [CI]: 1.12–3.48) and 1.74 (95% CI: 1.10–2.75), respectively. In the shellfish category, the unadjusted OR was 1.61 (95% CI: 1.00–2.59), which was significantly higher in the group who consumed seafood more than once a week than in the group who rarely consumed seafood. However, the OR after adjusting for the variables was not statistically significant. In women, the frequency of seafood consumption and the concentration of urinary BPA were not significantly associated.CONCLUSIONS: BPA concentration was higher in men who frequently consumed large fish and tuna, shellfish and other seafood in this study.
Adult
;
Environmental Health
;
Female
;
Health Behavior
;
Humans
;
Logistic Models
;
Male
;
Odds Ratio
;
Seafood
;
Shellfish
;
Tuna
4.Comparison of three types of analyzers for urine protein-tocreatinine ratios in dogs
Sumin JI ; Yeseul YANG ; Yeji JEONG ; Sung-Hyun HWANG ; Myung-Chul KIM ; Yongbaek KIM
Journal of Veterinary Science 2021;22(1):e14-
Background:
Quantitation of urine protein is important in dogs with chronic kidney disease.Various analyzers are used to measure urine protein-to-creatinine ratios (UPCR).
Objectives:
This study aimed to compare the UPCR obtained by three types of analyzers (automated wet chemistry analyzer, in-house dry chemistry analyzer, and dipstick reading device) and investigate whether the differences could affect clinical decision process.
Methods:
Urine samples were collected from 115 dogs. UPCR values were obtained using three analyzers. Bland-Altman and Passing Bablok tests were used to analyze agreement between the UPCR values. Urine samples were classified as normal or proteinuria based on the UPCR values obtained by each analyzer and concordance in the classification evaluated with Cohen's kappa coefficient.
Results:
Passing and Bablok regression showed that there were proportional as well as constant difference between UPCR values obtained by a dipstick reading device and those obtained by the other analyzers. The concordance in the classification of proteinuria was very high (κ = 0.82) between the automated wet chemistry analyzer and in-house dry chemistry analyzer, while the dipstick reading device showed moderate concordance with the automated wet chemistry analyzer (κ = 0.52) and in-house dry chemistry analyzer (κ = 0.53).
Conclusions
Although the urine dipstick test is simple and a widely used point-of-care test, our results indicate that UPCR values obtained by the dipstick test are not appropriate for clinical use. Inter-instrumental variability may affect clinical decision process based on UPCR values and should be emphasized in veterinary practice.
5.Relationship between seafood consumption and bisphenol A exposure: the Second Korean National Environmental Health Survey (KoNEHS 2012–2014)
Yeji KIM ; Minkyu PARK ; Do Jin NAM ; Eun Hye YANG ; Jae Hong RYOO
Annals of Occupational and Environmental Medicine 2020;32(1):e10-
BACKGROUND:
This study aimed to identify the relationship between exposure to bisphenol A (BPA) and seafood consumption using a nationally representative data of the general Korean population.
METHODS:
This study was conducted on 5,402 adults aged 19 years and older (2,488 men, 2,914 women) based on the second Korean National Environmental Health Survey (2012–2014). We stratified the data according to gender and analyzed urinary BPA concentrations in terms of sociodemographic characteristics, health behavior, dietary factor, and seafood consumption. In the high and low BPA exposure groups, the odds ratios (ORs) were calculated using logistic regression analysis according to the top 75th percentile concentration.
RESULTS:
In men, large fish and tuna and other seafood categories had significantly higher ORs before and after adjustment in the group who consumed seafood more than once a week than in the group who rarely consumed seafood, with an adjusted value of 1.97 (95% confidence interval [CI]: 1.12–3.48) and 1.74 (95% CI: 1.10–2.75), respectively. In the shellfish category, the unadjusted OR was 1.61 (95% CI: 1.00–2.59), which was significantly higher in the group who consumed seafood more than once a week than in the group who rarely consumed seafood. However, the OR after adjusting for the variables was not statistically significant. In women, the frequency of seafood consumption and the concentration of urinary BPA were not significantly associated.
CONCLUSIONS
BPA concentration was higher in men who frequently consumed large fish and tuna, shellfish and other seafood in this study.
6.Relationship between seafood consumption and bisphenol A exposure: the Second Korean National Environmental Health Survey (KoNEHS 2012–2014)
Yeji KIM ; Minkyu PARK ; Do Jin NAM ; Eun Hye YANG ; Jae Hong RYOO
Annals of Occupational and Environmental Medicine 2020;32(1):e10-
BACKGROUND:
This study aimed to identify the relationship between exposure to bisphenol A (BPA) and seafood consumption using a nationally representative data of the general Korean population.
METHODS:
This study was conducted on 5,402 adults aged 19 years and older (2,488 men, 2,914 women) based on the second Korean National Environmental Health Survey (2012–2014). We stratified the data according to gender and analyzed urinary BPA concentrations in terms of sociodemographic characteristics, health behavior, dietary factor, and seafood consumption. In the high and low BPA exposure groups, the odds ratios (ORs) were calculated using logistic regression analysis according to the top 75th percentile concentration.
RESULTS:
In men, large fish and tuna and other seafood categories had significantly higher ORs before and after adjustment in the group who consumed seafood more than once a week than in the group who rarely consumed seafood, with an adjusted value of 1.97 (95% confidence interval [CI]: 1.12–3.48) and 1.74 (95% CI: 1.10–2.75), respectively. In the shellfish category, the unadjusted OR was 1.61 (95% CI: 1.00–2.59), which was significantly higher in the group who consumed seafood more than once a week than in the group who rarely consumed seafood. However, the OR after adjusting for the variables was not statistically significant. In women, the frequency of seafood consumption and the concentration of urinary BPA were not significantly associated.
CONCLUSIONS
BPA concentration was higher in men who frequently consumed large fish and tuna, shellfish and other seafood in this study.
7.Dietary intake of fats and fatty acids in the Korean population: Korea National Health and Nutrition Examination Survey, 2013.
Yeji BAEK ; Ji Yun HWANG ; Kirang KIM ; Hyun Kyung MOON ; Sanghui KWEON ; Jieun YANG ; Kyungwon OH ; Jae Eun SHIM
Nutrition Research and Practice 2015;9(6):650-657
BACKGROUND/OBJECTIVES: The aim of this study was to estimate average total fat and fatty acid intakes as well as identify major food sources using data from the Korea National Health and Nutrition Examination Survey (KNHANES) VI-1 (2013). SUBJECTS/METHODS: Total fat and fatty acid intakes were estimated using 24-hour dietary recall data on 7,048 participants aged > or = 3 years from the KNHANES VI-1 (2013). Data included total fat, saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), polyunsaturated fatty acid (PUFA), n-3 fatty acid (n-3 FA), and n-6 fatty acid (n-6 FA) levels. Population means and standard errors of the mean were weighted in order to produce national estimates and separated based on sex, age, income, as well as residential region. Major food sources of fat, SFA, MUFA, PUFA, n-3 FA, and n-6 FA were identified based on mean consumption amounts of fat and fatty acids in each food. RESULTS: The mean intake of total fat was 48.0 g while mean intakes of SFA, MUFA, PUFA, n-3 FA, and n-6 FA were 14.4 g, 15.3 g, 11.6 g, 1.6 g, and 10.1 g, respectively. Intakes of MUFA and SFA were each higher than that of PUFA in all age groups. Pork was the major source of total fat, SFA, and MUFA, and soybean oil was the major source of PUFA. Milk and pork were major sources of SFA in subjects aged 3-11 years and > or = 12 years, respectively. Perilla seed oil and soybean oil were main sources of n-3 FA in subjects aged > or = 50 years and aged < 50 years, respectively. CONCLUSIONS: Estimation of mean fatty acid intakes of this study using nationally represented samples of the Korean population could be useful for developing and evaluating national nutritional policies.
Fats*
;
Fatty Acids*
;
Humans
;
Korea*
;
Milk
;
Nutrition Surveys*
;
Perilla
;
Soybean Oil
8.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
9.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.
10.Shank3 Overexpression Leads to Cardiac Dysfunction in Mice by Disrupting Calcium Homeostasis in Cardiomyocytes
Tae Hee KO ; Yoonhee KIM ; Chunmei JIN ; Byeongil YU ; Minju LEE ; Phuong Kim LUONG ; Tran Nguyet TRINH ; Yeji YANG ; Hyojin KANG ; Yinhua ZHANG ; Ruiying MA ; Kwangmin YOO ; Jungmin CHOI ; Jin Young KIM ; Sun-Hee WOO ; Kihoon HAN ; Jong-Il CHOI
Korean Circulation Journal 2025;55(2):100-117
Background and Objectives:
SH3 and multiple ankyrin repeat domains 3 (Shank3) proteins play crucial roles as neuronal postsynaptic scaffolds. Alongside neuropsychiatric symptoms, individuals with SHANK3 mutations often exhibit symptoms related to dysfunctions in other organs, including the heart. However, detailed insights into the cardiac functions of Shank3 remain limited. This study aimed to characterize the cardiac phenotypes of Shank3-overexpressing transgenic mice and explore the underlying mechanisms.
Methods:
Cardiac histological analysis, electrocardiogram and echocardiogram recordings were conducted on Shank3-overexpressing transgenic mice. Electrophysiological properties, including action potentials and L-type Ca2+ channel (LTCC) currents, were measured in isolated cardiomyocytes. Ca2+ homeostasis was assessed by analyzing cytosolic Ca2+transients and sarcoplasmic reticulum Ca2+ contents. Depolarization-induced cell shortening was examined in cardiomyocytes. Immunoprecipitation followed by mass spectrometrybased identification was employed to identify proteins in the cardiac Shank3 interactome.Western blot and immunocytochemical analyses were conducted to identify changes in protein expression in Shank3-overexpressing transgenic cardiomyocytes.
Results:
The hearts of Shank3-overexpressing transgenic mice displayed reduced weight and increased fibrosis. In vivo, sudden cardiac death, arrhythmia, and contractility impairments were identified. Shank3-overexpressing transgenic cardiomyocytes showed prolonged action potential duration and increased LTCC current density. Cytosolic Ca2+ transients were increased with prolonged decay time, while sarcoplasmic reticulum Ca2+ contents remained normal. Cell shortening was augmented in Shank3-overexpressing transgenic cardiomyocytes. The cardiac Shank3 interactome comprised 78 proteins with various functions. Troponin I levels were down-regulated in Shank3-overexpressing transgenic cardiomyocytes.
Conclusions
This study revealed cardiac dysfunction in Shank3-overexpressing transgenic mice, potentially attributed to changes in Ca2+ homeostasis and contraction, with a notable reduction in troponin I.