1.Differences in Hemoglobin Levels as Measured by Blood Gas and Auto Blood Cell Count Analyzers.
Seoyoung YOON ; Yeji CHA ; Oh Hun KWON ; Woonhyung LEE
Korean Journal of Blood Transfusion 2009;20(3):242-246
BACKGROUND: While point-of-care testing is being used increasingly as a basis for making decisions about erythrocyte transfusion, no valid standards or guidelines have been developed concerning the accuracy of measuring hemoglobin concentration. METHODS: To compare results from blood gas and auto blood cell count analyzers with respect to hemoglobin, 40 patient blood residual samples which had been withdrawn into 4 mL sodium heparin and EDTA tubes, were analyzed twice by each devices. RESULTS: Passing-Bablok comparisons for hemoglobin (g/dL) with the Nova CCX (y) and Advia 2120 (x) were y=0.877x+2.471 (r=0.985). Additionally, hemoglobin levels from the blood gas analyzer were out of the calculated range at the clinical decision point. CONCLUSION: Blood gas analyzers as point-of care testing exhibited a slightly higher hemoglobin level than auto blood cell count analyzers. Some also produced values of hemoglobin out of the expected range at the clinical decision point. Therefore, the use of blood gas analyzers for hemoglobin levels is limited and it is recommended that the assessment of hemoglobin for transfusion should be determined using auto blood cell count analyzers.
Blood Cell Count
;
Blood Cells
;
Edetic Acid
;
Erythrocyte Transfusion
;
Hemoglobins
;
Heparin
;
Humans
2.Prospective Evaluation of Various Ultrasound Parameters for Assessing Renal Allograft Rejection Subtypes: Elasticity and Dispersion as Diagnostic Tools
Yeji KWON ; Jongjin YOON ; Dae Chul JUNG ; Young Taik OH ; Kyunghwa HAN ; Minsun JUNG ; Byung Chul KANG
Yonsei Medical Journal 2025;66(4):249-258
Purpose:
Renal allograft rejection, either acute or chronic, is prevalent among many recipients. This study aimed to identify multiple Doppler ultrasound parameters for predicting renal allograft rejection.
Materials and Methods:
Between November 2021 and April 2022, 61 renal allograft recipients were studied prospectively after excluding two patients with dual transplants and seven with hydronephrosis. The analysis excluded 11 cases (10 due to missing Doppler data or pathology reports and one due to a high interquartile range/median dispersion value), resulting in a final analysis of 50 patients. Clinical characteristics, color Doppler imaging, superb microvascular imaging, and shear-wave imaging parameters were assessed by three experienced genitourinary radiologists. The Banff classification of the biopsy tissue served as the reference standard. Univariable and multivariable logistic regression, contingency matrices, and multiple machine-learning models were employed to estimate the associations.
Results:
Fifty kidney transplant recipients (mean age, 53.26±8.86 years; 29 men) were evaluated. Elasticity (≤14.8 kPa) demonstrated significant associations for predicting the combination of (borderline) T cell-mediated rejection (TCMR) categories (Banff categories 3 and 4) (p=0.006) and yielded equal or higher area under the receiver operating characteristics curve (AUC) values compared to various classifiers. Dispersion (>15.0 m/s/kHz) was the only significant factor for predicting the combination of nonTCMR categories (Banff categories 2, 5, and 6) (p=0.026) and showed equal or higher AUC values than multiple machine learning classifiers.
Conclusion
Elasticity (≤14.8 kPa) showed a significant association with the combination of (borderline) TCMR categories, whereas dispersion (>15.0 m/s/kHz) was significantly associated with the combination of non-TCMR categories in renal allografts.
3.Prospective Evaluation of Various Ultrasound Parameters for Assessing Renal Allograft Rejection Subtypes: Elasticity and Dispersion as Diagnostic Tools
Yeji KWON ; Jongjin YOON ; Dae Chul JUNG ; Young Taik OH ; Kyunghwa HAN ; Minsun JUNG ; Byung Chul KANG
Yonsei Medical Journal 2025;66(4):249-258
Purpose:
Renal allograft rejection, either acute or chronic, is prevalent among many recipients. This study aimed to identify multiple Doppler ultrasound parameters for predicting renal allograft rejection.
Materials and Methods:
Between November 2021 and April 2022, 61 renal allograft recipients were studied prospectively after excluding two patients with dual transplants and seven with hydronephrosis. The analysis excluded 11 cases (10 due to missing Doppler data or pathology reports and one due to a high interquartile range/median dispersion value), resulting in a final analysis of 50 patients. Clinical characteristics, color Doppler imaging, superb microvascular imaging, and shear-wave imaging parameters were assessed by three experienced genitourinary radiologists. The Banff classification of the biopsy tissue served as the reference standard. Univariable and multivariable logistic regression, contingency matrices, and multiple machine-learning models were employed to estimate the associations.
Results:
Fifty kidney transplant recipients (mean age, 53.26±8.86 years; 29 men) were evaluated. Elasticity (≤14.8 kPa) demonstrated significant associations for predicting the combination of (borderline) T cell-mediated rejection (TCMR) categories (Banff categories 3 and 4) (p=0.006) and yielded equal or higher area under the receiver operating characteristics curve (AUC) values compared to various classifiers. Dispersion (>15.0 m/s/kHz) was the only significant factor for predicting the combination of nonTCMR categories (Banff categories 2, 5, and 6) (p=0.026) and showed equal or higher AUC values than multiple machine learning classifiers.
Conclusion
Elasticity (≤14.8 kPa) showed a significant association with the combination of (borderline) TCMR categories, whereas dispersion (>15.0 m/s/kHz) was significantly associated with the combination of non-TCMR categories in renal allografts.
4.Prospective Evaluation of Various Ultrasound Parameters for Assessing Renal Allograft Rejection Subtypes: Elasticity and Dispersion as Diagnostic Tools
Yeji KWON ; Jongjin YOON ; Dae Chul JUNG ; Young Taik OH ; Kyunghwa HAN ; Minsun JUNG ; Byung Chul KANG
Yonsei Medical Journal 2025;66(4):249-258
Purpose:
Renal allograft rejection, either acute or chronic, is prevalent among many recipients. This study aimed to identify multiple Doppler ultrasound parameters for predicting renal allograft rejection.
Materials and Methods:
Between November 2021 and April 2022, 61 renal allograft recipients were studied prospectively after excluding two patients with dual transplants and seven with hydronephrosis. The analysis excluded 11 cases (10 due to missing Doppler data or pathology reports and one due to a high interquartile range/median dispersion value), resulting in a final analysis of 50 patients. Clinical characteristics, color Doppler imaging, superb microvascular imaging, and shear-wave imaging parameters were assessed by three experienced genitourinary radiologists. The Banff classification of the biopsy tissue served as the reference standard. Univariable and multivariable logistic regression, contingency matrices, and multiple machine-learning models were employed to estimate the associations.
Results:
Fifty kidney transplant recipients (mean age, 53.26±8.86 years; 29 men) were evaluated. Elasticity (≤14.8 kPa) demonstrated significant associations for predicting the combination of (borderline) T cell-mediated rejection (TCMR) categories (Banff categories 3 and 4) (p=0.006) and yielded equal or higher area under the receiver operating characteristics curve (AUC) values compared to various classifiers. Dispersion (>15.0 m/s/kHz) was the only significant factor for predicting the combination of nonTCMR categories (Banff categories 2, 5, and 6) (p=0.026) and showed equal or higher AUC values than multiple machine learning classifiers.
Conclusion
Elasticity (≤14.8 kPa) showed a significant association with the combination of (borderline) TCMR categories, whereas dispersion (>15.0 m/s/kHz) was significantly associated with the combination of non-TCMR categories in renal allografts.
5.Prospective Evaluation of Various Ultrasound Parameters for Assessing Renal Allograft Rejection Subtypes: Elasticity and Dispersion as Diagnostic Tools
Yeji KWON ; Jongjin YOON ; Dae Chul JUNG ; Young Taik OH ; Kyunghwa HAN ; Minsun JUNG ; Byung Chul KANG
Yonsei Medical Journal 2025;66(4):249-258
Purpose:
Renal allograft rejection, either acute or chronic, is prevalent among many recipients. This study aimed to identify multiple Doppler ultrasound parameters for predicting renal allograft rejection.
Materials and Methods:
Between November 2021 and April 2022, 61 renal allograft recipients were studied prospectively after excluding two patients with dual transplants and seven with hydronephrosis. The analysis excluded 11 cases (10 due to missing Doppler data or pathology reports and one due to a high interquartile range/median dispersion value), resulting in a final analysis of 50 patients. Clinical characteristics, color Doppler imaging, superb microvascular imaging, and shear-wave imaging parameters were assessed by three experienced genitourinary radiologists. The Banff classification of the biopsy tissue served as the reference standard. Univariable and multivariable logistic regression, contingency matrices, and multiple machine-learning models were employed to estimate the associations.
Results:
Fifty kidney transplant recipients (mean age, 53.26±8.86 years; 29 men) were evaluated. Elasticity (≤14.8 kPa) demonstrated significant associations for predicting the combination of (borderline) T cell-mediated rejection (TCMR) categories (Banff categories 3 and 4) (p=0.006) and yielded equal or higher area under the receiver operating characteristics curve (AUC) values compared to various classifiers. Dispersion (>15.0 m/s/kHz) was the only significant factor for predicting the combination of nonTCMR categories (Banff categories 2, 5, and 6) (p=0.026) and showed equal or higher AUC values than multiple machine learning classifiers.
Conclusion
Elasticity (≤14.8 kPa) showed a significant association with the combination of (borderline) TCMR categories, whereas dispersion (>15.0 m/s/kHz) was significantly associated with the combination of non-TCMR categories in renal allografts.
6.Prospective Evaluation of Various Ultrasound Parameters for Assessing Renal Allograft Rejection Subtypes: Elasticity and Dispersion as Diagnostic Tools
Yeji KWON ; Jongjin YOON ; Dae Chul JUNG ; Young Taik OH ; Kyunghwa HAN ; Minsun JUNG ; Byung Chul KANG
Yonsei Medical Journal 2025;66(4):249-258
Purpose:
Renal allograft rejection, either acute or chronic, is prevalent among many recipients. This study aimed to identify multiple Doppler ultrasound parameters for predicting renal allograft rejection.
Materials and Methods:
Between November 2021 and April 2022, 61 renal allograft recipients were studied prospectively after excluding two patients with dual transplants and seven with hydronephrosis. The analysis excluded 11 cases (10 due to missing Doppler data or pathology reports and one due to a high interquartile range/median dispersion value), resulting in a final analysis of 50 patients. Clinical characteristics, color Doppler imaging, superb microvascular imaging, and shear-wave imaging parameters were assessed by three experienced genitourinary radiologists. The Banff classification of the biopsy tissue served as the reference standard. Univariable and multivariable logistic regression, contingency matrices, and multiple machine-learning models were employed to estimate the associations.
Results:
Fifty kidney transplant recipients (mean age, 53.26±8.86 years; 29 men) were evaluated. Elasticity (≤14.8 kPa) demonstrated significant associations for predicting the combination of (borderline) T cell-mediated rejection (TCMR) categories (Banff categories 3 and 4) (p=0.006) and yielded equal or higher area under the receiver operating characteristics curve (AUC) values compared to various classifiers. Dispersion (>15.0 m/s/kHz) was the only significant factor for predicting the combination of nonTCMR categories (Banff categories 2, 5, and 6) (p=0.026) and showed equal or higher AUC values than multiple machine learning classifiers.
Conclusion
Elasticity (≤14.8 kPa) showed a significant association with the combination of (borderline) TCMR categories, whereas dispersion (>15.0 m/s/kHz) was significantly associated with the combination of non-TCMR categories in renal allografts.
7.U-Net-Based Automatic Segmentation of Sphenoid Sinus Fluid in Drowning Cases Using Postmortem CT Images:A Feasibility Study
Jin-Haeng HEO ; Seon Jung JANG ; Jeong-hwa KWON ; Young San KO ; Sang-Beom IM ; Sookyoung LEE ; In-Soo SEO ; Joo-Young NA ; Yeji KIM ; Yongsu YOON
Korean Journal of Legal Medicine 2024;48(1):7-13
Detecting sphenoid sinus fluid (SSF) is an additional finding in autopsies for diagnosing drowning. SSF can provide additional forensic evidence through laboratory tests such as diatom and electrolyte analyses. If drowning is suspected, accurately assessing the presence and volume of SSF during an autopsy is crucial. Utilizing postmortem computed tomography (PMCT) images could aid in accurately sampling SSF. Accurately segmenting the region of interest is essential for volume analysis using computed tomography images. However, manual segmentation techniques are labor-intensive and time-consuming, and their success depends on the experience of the observer. Therefore, this study aimed to develop a U-Net–based deep learning model for the automatic segmentation of SSF in drowning cases using PMCT images and to evaluate the performance of the model. We retrospectively reviewed 34 drowning cases in which both PMCT scans and forensic autopsies were performed at our institution. The U-Net architecture of deep learning was used for automatic segmentation. The proposed model achieved the Dice similarity coefficient (DSC) and Intersection over Union (IoU) of a maximum of 95.85% and 92.03%, a minimum of 0% and 0%, and an average of 77.15% and 67.18%, respectively. Although the average DSC and IoU did not show high similarity, this study showed that PMCT images can be used for automatic segmentation of SSF in drowning cases, which could improve the performance with sufficient dataset acquisition and further model training.