5.Development of Metabolic Synthetic Lethality and Its Implications for Thyroid Cancer
Sang-Hyeon JU ; Seong Eun LEE ; Yea Eun KANG ; Minho SHONG
Endocrinology and Metabolism 2022;37(1):53-61
Cancer therapies targeting genetic alterations are a topic of great interest in the field of thyroid cancer, which frequently harbors mutations in the RAS, RAF, and RET genes. Unfortunately, U.S. Food and Drug Administration-approved BRAF inhibitors have relatively low therapeutic efficacy against BRAF-mutant thyroid cancer; in addition, the cancer often acquires drug resistance, which prevents effective treatment. Recent advances in genomics and transcriptomics are leading to a more complete picture of the range of mutations, both driver and messenger, present in thyroid cancer. Furthermore, our understanding of cancer suggests that oncogenic mutations drive tumorigenesis and induce rewiring of cancer cell metabolism, which promotes survival of mutated cells. Synthetic lethality (SL) is a method of neutralizing mutated genes that were previously considered untargetable by traditional genotype-targeted treatments. Because these metabolic events are specific to cancer cells, we have the opportunity to develop new therapies that target tumor cells specifically without affecting healthy tissue. Here, we describe developments in metabolism-based cancer therapy, focusing on the concept of metabolic SL in thyroid cancer. Finally, we discuss the essential implications of metabolic reprogramming and its role in the future direction of SL for thyroid cancer.
7.Toward Systems-Level Metabolic Analysis in Endocrine Disorders and Cancer
Aliya LAKHANI ; Da Hyun KANG ; Yea Eun KANG ; Junyoung O. PARK
Endocrinology and Metabolism 2023;38(6):619-630
Metabolism is a dynamic network of biochemical reactions that support systemic homeostasis amidst changing nutritional, environmental, and physical activity factors. The circulatory system facilitates metabolite exchange among organs, while the endocrine system finely tunes metabolism through hormone release. Endocrine disorders like obesity, diabetes, and Cushing’s syndrome disrupt this balance, contributing to systemic inflammation and global health burdens. They accompany metabolic changes on multiple levels from molecular interactions to individual organs to the whole body. Understanding how metabolic fluxes relate to endocrine disorders illuminates the underlying dysregulation. Cancer is increasingly considered a systemic disorder because it not only affects cells in localized tumors but also the whole body, especially in metastasis. In tumorigenesis, cancer-specific mutations and nutrient availability in the tumor microenvironment reprogram cellular metabolism to meet increased energy and biosynthesis needs. Cancer cachexia results in metabolic changes to other organs like muscle, adipose tissue, and liver. This review explores the interplay between the endocrine system and systems-level metabolism in health and disease. We highlight metabolic fluxes in conditions like obesity, diabetes, Cushing’s syndrome, and cancers. Recent advances in metabolomics, fluxomics, and systems biology promise new insights into dynamic metabolism, offering potential biomarkers, therapeutic targets, and personalized medicine.
8.The Role of Circulating Slit2, the One of the Newly Batokines, in Human Diabetes Mellitus.
Yea Eun KANG ; Sorim CHOUNG ; Ju Hee LEE ; Hyun Jin KIM ; Bon Jeong KU
Endocrinology and Metabolism 2017;32(3):383-388
BACKGROUND: Slit2 is a new secreted protein from adipose tissue that improves glucose hemostasis in mice; however, there is no study about the serum levels and precise role of Slit2 in human. The aim of this study is to explore the serum level of Slit2 in human, and to identify the role of Slit2 in diabetes mellitus (DM). METHODS: The participants of this study consist of 38 subjects with newly diagnosed DM, and 75 healthy subjects as a control group. Serum Slit2 levels were measured using an enzyme-linked immunosorbent assay. Relationship between circulating Slit2 and diabetic related factors was investigated in diabetic group compared with non-diabetic group. Additionally, the correlations between the serum level of Slit2 and diverse metabolic parameters were analyzed. RESULTS: Circulating Slit2 level was more decreased in diabetic group than in control group, but there was no significant difference statistically. Interestingly, serum levels of Slit2 were significantly negatively correlated to the serum concentrations of fasting glucose (coefficient r=–0.246, P=0.008), the serum concentrations of postprandial glucose (coefficient r=–0.233, P=0.017), and glycosylated hemoglobin (HbA1c; coefficient r=–0.357, P<0.001). CONCLUSION: From our study, the first report of circulating Slit2 levels in human, circulating Slit2 level significantly negatively correlated with serum glucose and HbA1c. Our results suggest that the circulating Slit2 may play a role in maintainence of glucose homeostasis in human, even though exact contribution and mechanism are not yet known.
Adipokines
;
Adipose Tissue
;
Adipose Tissue, Brown
;
Animals
;
Blood Glucose
;
Diabetes Mellitus*
;
Enzyme-Linked Immunosorbent Assay
;
Fasting
;
Glucose
;
Healthy Volunteers
;
Hemoglobin A, Glycosylated
;
Hemostasis
;
Homeostasis
;
Humans*
;
Mice
9.Malignant intercostal psammomatous melanotic schwannoma in a patient with Carney complex.
Yea Eun KANG ; Jin Ok JEONG ; Kyung Hee KIM ; Chang Seok KI ; Hyun Jin KIM
The Korean Journal of Internal Medicine 2018;33(6):1256-1257
No abstract available.
Carney Complex*
;
Humans
;
Neurilemmoma*
10.Regulation of Systemic Glucose Homeostasis by T Helper Type 2 Cytokines
Yea Eun KANG ; Hyun Jin KIM ; Minho SHONG
Diabetes & Metabolism Journal 2019;43(5):549-559
Obesity results in an inflammatory microenvironment in adipose tissue, leading to the deterioration of tissue protective mechanisms. Although recent studies suggested the importance of type 2 immunity in an anti-inflammatory microenvironment in adipose tissue, the regulatory effects of T helper 2 (Th2) cytokines on systemic metabolic regulation are not fully understood. Recently, we identified the roles of the Th2 cytokine (interleukin 4 [IL-4] and IL-13)-induced adipokine, growth differentiation factor 15 (GDF15), in adipose tissue in regulating systemic glucose metabolism via signal transducer and activator of transcription 6 (STAT6) activation. Moreover, we showed that mitochondrial oxidative phosphorylation is required to maintain these macrophage-regulating autocrine and paracrine signaling pathways via Th2 cytokine-induced secretion of GDF15. In this review, we discuss how the type 2 immune response and Th2 cytokines regulate metabolism in adipose tissue. Specifically, we review the systemic regulatory roles of Th2 cytokines in metabolic disease and the role of mitochondria in maintenance of type 2 responses in adipose tissue homeostasis.
Adipokines
;
Adipose Tissue
;
Cytokines
;
Glucose
;
Growth Differentiation Factor 15
;
Homeostasis
;
Metabolic Diseases
;
Metabolism
;
Mitochondria
;
Obesity
;
Oxidative Phosphorylation
;
Paracrine Communication
;
STAT6 Transcription Factor