1.Research progress on the relationship between early life obesogen exposure and childhood obesity
GAO Lei ; YE Zhen ; WANG Wei ; ZHAO Dong ; XU Peiwei ; ZHANG Ronghua
Journal of Preventive Medicine 2026;38(1):48-54
Childhood obesity has become a global public health issue. Current research indicates that early life obesogen exposure has emerged as a significant risk factor for childhood obesity. While obesogens have been confirmed to influence the development and progression of childhood obesity through mechanisms such as endocrine disruption and epigenetic programming, controversies remain regarding the establishment of causal relationships, assessment of combined exposures, and validation of transgenerational effects in humans. In recent years, novel approaches including multi-omics technologies, exposome-based analysis, and multigenerational cohort studies have integrated dynamic biomarker monitoring with analyses of social-environmental interactions, offering new perspectives and methodologies for constructing a systematic "exposure-mechanism-outcome" research framework. This article reviews literature from PubMed and Web of Science up to August 2025 on the association between early life obesogen exposure and childhood obesity, summarizing evidence on the health effects of early life obesogen exposure, major exposure pathways and internal exposure assessment, interactions and amplifying effects of social and environmental factors, as well as the biological mechanisms underlying obesogen action. It further examines current research frontiers and challenges, aiming to provide a theoretical foundation for early prevention and precision intervention of childhood obesity.
2.Effect and Mechanisms of Ermiao Formula Analogs and Their Active Components in Treating Dampness-heat Type Gouty Arthritis: A Review
Xueping ZHAO ; Xinya ZHANG ; Le YANG ; Ye SUN ; Xin SUN ; Hui SUN ; Qimeng ZHANG ; Guangli YAN ; Xijun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):276-285
Gouty arthritis (GA) is caused by monosodium urate(MSU) deposition due to purine metabolism disorders. In traditional Chinese medicine (TCM), it falls under the category of "dampness-heat Bi syndrome", with core pathogenesis involving dampness-heat accumulation and dysfunction of the spleen and kidney. The dampness-heat syndrome is the most common and the primary syndrome type during acute attacks. In Western medicine, GA is associated with purine metabolism imbalance and inflammation triggered by MSU crystals, involving pathways such as NOD-like receptor protein 3 (NLRP3) inflammasome activation and Toll-like receptor 2/4 (TLR2/4) signaling. Clinically, colchicine and similar drugs are commonly used to treat GA, although long-term use carries potential side effects. Ermiao Formula analogs originate from ancient prescriptions, including Ermiao, Sanmiao, and Simiao compound formulas. All contain Atractylodis Rhizoma and Phellodendri Chinensis Cortex. Ermiaowan follow a 1∶1 formulation ratio. Sanmiaowan add Cyathulae Radix. Simiaowan further incorporate Coicis Semen. These formulas are rich in active ingredients, including alkaloids, terpenoids, flavonoids, and sterols, and treat GA through multi-component, multi-pathway, and multi-target mechanisms. Ermiaosan primarily exerts anti-inflammatory effects by inhibiting pathways such as TLR4/nuclear factor kappa-B (NF-κB) or regulating immune responses to reduce the release of inflammatory mediators, while also suppressing xanthine dehydrogenase (XDH) and xanthine oxidase (XO) activity to decrease uric acid production. Sanmiaowan enhance uric acid-lowering and anti-inflammatory effects through the guiding herb Cyathulae Radix, while also protecting cartilage from damage. Simiaowan utilizes Coicis Semen to regulate intestinal flora, alleviate dampness-heat symptoms, and exert multi-pathway anti-inflammatory and uric acid-lowering effects. The active ingredients contribute differently to uric acid metabolism regulation, anti-inflammation, antioxidant activity, and bone repair, resulting in varying therapeutic effects due to differences in formula composition. In summary, formulas derived from Ermiaosan demonstrate significant efficacy in treating dampness-heat type GA. This review summarizes their research progress and mechanisms, providing a reference for clinical application, new drug development, and further studies.
3.Extraction process optimization and quality control of Xuetong capsules
Fangjian CHEN ; Juanjuan ZHAO ; Kanti YE ; Yuxin SUN ; Jiyong LIU ; Jun YANG
Journal of Pharmaceutical Practice and Service 2025;43(2):82-86
Objective To optimize the extraction process of Xuetong capsules and establish its quality control method. Methods The extraction process was optimized by orthogonal experiment using ethanol reflux method to investigate the effects of different factors on diphenylstilbene, aloin and extraction yield. The content of 5 anthraquinone compounds in Xuetong capsule was determined by HPLC. Results The optimal extraction process was to add 10 times ethanol, with an ethanol concentration of 70%, and extract 3 times, each time for 1 h; 5 components had a good linear relationship with peak area within a certain concentration range, r>0.999 7; The range of sample recovery rate was 93.66%-96.85%, RSD range of 1.48%-1.66%. The content determination results of the 5 components in three batches of Xuetong capsules were (0.632-0.641), (0.660-0.681), (1.968-1.991), (2.547-2.580), and (1.076-1.101) mg/g. Conclusion The method was accurate, reproducible, and highly feasible, which could be references for producing and improving the quality control standards of Xuetong capsules.
4.Characteristics of imprinted differentially methylated regions in preeclampsia placenta
Huijun TANG ; Xiaojun JIA ; Xinzhi ZHAO ; Weiping YE
Chinese Journal of Clinical Medicine 2025;32(1):65-71
Objective To investigate the characteristics of imprinted differentially methylated regions (iDMRs) in placentas and their correlation with preeclampsia (PE). Methods A total of 43 healthy pregnant women (control group) and 33 pregnant women with PE (PE group) at Shanghai Putuo Maternity and Infant Hospital and International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine from September 2021 to September 2023 were selected. A total of 3 362 CpG sites in 62 iDMRs were analyzed in 76 placenta and 5 maternal blood samples using BisCap targeted bisulfite resequencing (BisCap-seq) assays. The CpG sites in the CpG islands of the iDMRs were assessed for their methylation levels and methylation linkage disequilibrium (MLD). Imprinted methylation haplotype blocks (iMHBs) were constructed based on MLD. The methylation levels and variablility of CpG sites and iMHBs were compared among the healthy placenta, PE placenta and blood samples. Results The CpG sites in the CpG islands of the iDMRs exhibited intermediate methylation, with adjacent sites displaying high MLD (methylation levels: 0.35-0.65, D’ > 0.8). A total of 185 iMHBs were constructed using these coupled CpG sites, 60 placenta-specific iMHBs and 38 somatic iMHBs were found to be differentially methylated in the placenta compared with maternal blood (Padj<0.05). Twenty-seven iMHBs were identified with differentially variable methylation patterns in the placenta. The iMHBs methylation was unchanged in the PE placentas compared to the healthy placentas. Twenty-seven differentially methylated cytosines (DMCs) were identified outside the iMHBs structure, among which the methylation levels of 19 CpG sites showed statistically significant differences between the PE group and the control group (Padj<0.05). The quantitative results of placental compositions of maternal plasma cell-free DNA (cfDNA) using placenta-specific haplotype (PSH) were highly correlated with those estimated by a deconvolution methodology (r=0.973, P<0.01). Conclusions The genomic imprinting features in the PE placentas were obvious, and PSH could be a potential marker of the placenta to quantify the placental compositions of maternal plasma cfDNA.
5.Effects of bioactive peptides combined with probiotics on serum uric acid in patients with hyperuricemia
HAN Dan ; ZHAO Ya ; HUANG Enshan ; YE Shuhua ; WANG Wanjin ; WU Fangmin ; WANG Dingliang ; ZHANG Ronghua
Journal of Preventive Medicine 2025;37(1):40-45
Objective:
To evaluate the effect of bioactive peptides combined with probiotics on serum uric acid (SUA) in patients with hyperuricemia (HUA), so as to provide the evidence for prevention and treatment of HUA.
Methods:
The patients with HUA aged 18 to 65 years were selected and randomly divided into an intervention group and a control group. The patients in the intervention group received bioactive peptides combined with probiotics for 28 days at a dose of 3 g/d, while the patients in the control group received an equal dose of placebos. Demographic information, body mass index (BMI), blood pressure and blood lipid were collected through questionnaire surveys, physical examination and laboratory tests. SUA levels were detected before and after 14 days and 28 days of interventions. The differences of SUA levels between the two groups were compared using generalized estimation equation.
Results:
Totally 108 patients with HUA were recruited, including 54 patients in the intervention group and 53 patients in the control group (1 dropout). Before interventions, there were no statistically significant differences in gender, age, course of HUA, exercise duration, frequency of alcohol consumption, frequency of meat broth consumption, BMI, prevalence of hypertension and prevalence of dyslipidemia between the two groups (all P>0.05). After 14 days of interventions, the SUA levels of the patients in the intervention group decreased by 3.00 μmol/L, while those in the control group increased by 7.00 μmol/L. After 28 days of interventions, the SUA levels of the patients in the intervention group and the control group decreased by 26.00 μmol/L and 16.00 μmol/L, respectively. However, there was no statistically significant interaction between the intervention time and group (both P>0.05). Subgroup analysis showed that after 28 days of interventions, the decrease in SUA levels in the patients aged 55 years and older and without hypertension in the intervention group was greater than those in the control group (both P<0.05).
Conclusions
Bioactive peptides combined with probiotics showed no significant difference in reducing SUA levels in patients with HUA compared to the control group. The effect was more significant for patients aged 55 years and older and without hypertension.
6.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
7.Research advances in cancer therapy of cisplatin liposome
Weixuan ZHAO ; Xue LU ; Ruilin ZHAO ; Yanmei ZHANG ; Ye YANG ; Deying CAO
China Pharmacy 2025;36(3):356-361
Chemotherapy based on cisplatin or its combination therapy is a common cancer treatment method. However, the non-specific side effects of cisplatin, poor pharmacokinetic properties of small molecule drugs, and susceptibility to drug resistance greatly limit the clinical application of cisplatin as first-line anti-tumor drug. With the development of nanocarrier technology, liposomes have become an ideal carrier for delivering cisplatin drugs due to their excellent properties of targeting, reducing toxicity, and enhancing efficacy. This paper reviews the status of cisplatin liposome both domestically and internationally which have entered clinical trials, including L-NDDP,SPI-077®, Lipoplatin®,LiPlaCis,SLIT and ILC, etc. Currently, only Lipoplatin® and ILC are showing good potential in cancer therapy. Although cisplatin liposome has made some progress in reducing systemic toxicity and improving treatment efficiency in clinical research, there is still potential for further improvement in tumor targeting and reducing side effects. In the future, more low-toxicity and efficient cisplatin liposomes can be developed through formulation technologies such as co-delivery liposome, stimuli-responsive liposome and targeting liposome.
8.Spectrum-effect Relationship of Bupleuri Radix Processed with Trionyx sinensis Blood for Yin Deficiency Based on Saponins
Mengyu HOU ; Xia ZHAO ; Zhiyu GUO ; Ting LIU ; Yuexing MA ; Yaohui YE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):147-155
ObjectiveTo analyze the pharmacodynamic activity of Bupleuri Radix processed with Trionyx sinensis blood in the treatment of Yin deficiency and study the spectrum-effect relationship of this medicine. MethodsHigh performance liquid chromatography was employed to establish the fingerprints of 15 batches of Bupleuri Radix processed with Trionyx sinensis blood, and the similarity was evaluated according to the SOP of Similarity Evaluation System of Chromatographic Fingerprint of TCM (version 2012). A mouse model of Yin deficiency induced by thyroxine was established. The relationship between the active components and the effect on Yin deficiency was explored by grey correlation analysis and partial least squares method based on the changes in the serum levels of triiodothyronine (T3), thyroxine (T4), cyclic adenosine phosphate (cAMP), and cyclic guanosine phosphate (cGMP). The components screened out based on the spectrum-effect relationship were used for retrieval of the targets from the Traditional Chinese Medicine Systems Pharmacology and Analysis Database (TCMSP), The Encyclopedia of Traditional Chinese Medicine (ETCM), and Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine (TCMIP). Furthermore, the Online Mendelian Inheritance in Man (OMIM), GeneCards, TTD, DisGeNET, and Drugbank were employed to establish the active component-target against Yin deficiency network of Bupleuri Radix processed with Trionyx sinensis blood. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out for the core targets. Real-time PCR was conducted to verify the predicted key pathways and mechanisms. ResultsThe fingerprints of the 15 batches of Bupleuri Radix processed with Trionyx sinensis blood showed the similarities of 0.976-0.999 with the control fingerprint. Compared with the model group, the drug administration group showed elevated levels of T3 and T4 and lowered levels of cAMP, cGMP and cAMP/cGMP. The results of grey correlation analysis showed that active components in terms of the correlations followed the trend of saikosaponin B1 > saikosaponin B2 > saikosaponin C > saikosaponin D > saikosaponin A. The partial least squares analysis showed that saikosaponins A, D, B1, and B2 had higher VIP values. Network pharmacology predicted a total of 30 common targets, which were enriched in 276 GO terns and 115 KEGG pathways. The results of Real-time PCR showed that the model group had lower mRNA levels of Caspase-9, kinase insert domain receptor (KDR), and mammalian target of rapamycin (mTOR) and higher mRNA level of mouse double minute 2 homolog (MDM2) than the blank group and the drug administration group. ConclusionBupleuri Radix processed with Trionyx sinensis blood has therapeutic effect on Yin deficiency syndrome, which provides a new idea for studying Bupleuri Radix processed with Trionyx sinensis blood.
9.Textual Research on Key Information and Modern Clinical Application of Classical Famous Formula Liumotang
Xinyu ZHANG ; Chong LI ; Yixuan HU ; Luming LIANG ; Ye ZHAO ; Xiaoting LU ; Yu WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):201-212
Liumotang comes from the Yuan dynasty's Effective Prescription Handed Down for Generations of Physicians. It is composed of six medicinal materials: Arecae Semen, Aquilariae Lignum Resinatum, Aucklandiae Radix, Linderae Radix, Rhei Radix et Rhizoma, and Aurantii Fructus. It is a classical formula for treating abdominal pain due to Qi stagnation and constipation accompanied by heat. This study systematically collated the records of Liumotang in ancient medical books and modern clinical literature and conducted in-depth analysis and textual research on its formula source, main diseases, composition, dosage, medical books, container capacity, processing, preparation method, usage, drug basis, formula meaning, and other key information, so as to provide a powerful reference for the development and clinical application of compound preparations of the classical formula Liumotang. The results show that Liumotang was first seen in Effective Prescription Handed Down for Generations of Physicians, and many medical books of the past dynasties have imitated this. In terms of drug basis, the dried and mature seeds of the palm plant Areca catechu, resin-containing wood of the Daphneaceae plant Aquilaria sinensis, the dried roots of the Asteraceae plant woody Aucklandia lappa, the dried tuber root of the Lauraceae plant Lindera aggregata, the dried roots and rhizomes of the knotweed plant, R. palmatum, R.tangutikum, and R. officinale, and the dried and unripe fruits of the citrus genus C. aurantium and its cultivated varieties from the family Rutaceae were selected. In terms of dosage, through the textual research on bowls in the Ming and Qing dynasties, combined with the conversion of medicines and bowl capacity in the Qing dynasty, it was estimated that the dosage of each drug in the Yuan dynasty was 10.86 g. In the Ming and Qing dynasties, the dosage of drugs was mostly equal, but the dosage of drugs was somewhat different. In terms of processing, preparation method, and usage, in the medical books of the past dynasties, the processing of drugs has slightly changed, but raw drugs are used in all preparations. The preparation method and usage did not change much during the Yuan, Ming, and Qing dynasties, except for certain differences in dosage. In terms of syndrome, Liumotang was first used to treat abdominal pain due to Qi stagnation and constipation accompanied by heat. Medical books of the past dynasties often omit the symptoms of heat. In modern clinical practice, Liumotang is mainly used in the digestive system and urinary system diseases and is mostly used to treat constipation-predominant irritable bowel syndrome, biliary reflux gastritis, functional constipation, slow transit constipation, and other diseases, with no adverse reactions found yet. The above results provide a reliable scientific basis for the development and clinical treatment of Liumotang compound preparations.
10.Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway
Zhao LI ; Ya-Hong WU ; Ye-Qing GUO ; Xiao-Jia MIN ; Ying LIN
The Korean Journal of Physiology and Pharmacology 2025;29(2):191-204
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms.RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.


Result Analysis
Print
Save
E-mail