1.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
2.Related factors and prognostic impact of cardiac valve calcification in maintenance hemodialysis patients
Chengjun WANG ; Xiaorong BAO ; Zixuan QIAO ; Miao MIAO ; Wei YE ; Lizhen WANG ; Zhengjia HE ; Jiao WANG
Chinese Journal of Clinical Medicine 2025;32(4):568-577
Objective To explore risk factors for cardiac valve calcification (CVC) in maintenance hemodialysis (MHD) patients and evaluate its impact on cardiovascular events and mortality. Methods Retrospective selection of 223 patients with MHD admitted to the Department of Nephrology of Jinshan Hospital, Fudan University from June 30, 2019 to June 30, 2024, and enrollment completed within one week of June 30, 2019. Patients were divided into CVC and non-CVC groups. Baseline data and 5-year follow-up data were collected. The binary logistic regression analysis was performed to explore the risk factors for CVC. Kaplan-Meier survival curve was used to analyze the survival rate of patients. Cox proportional hazard regression model was applied to evaluate the impact of CVC on the survival rates of MHD patients. Results Totally, 223 MHD patients with an average age of (58.4±13.5) years and an average dialysis duration of (64.0±55.4) months were involved. Among them, 136(61.0%) were males, 117(52.5%) were complicated with CVC. Age, dialysis duration, diabetic kidney disease (DKD), the serum corrected total calcium and phosphate, intact parathyroid hormone (iPTH), high-sensitive C-reactive protein (hsCRP), and homocysteine (Hcy) were independent related factors for CVC (P<0.05). Both all-cause mortality (46.6% vs 28.7%) and cardiovascular mortality (33.3% vs 16.0%) were significantly higher in the CVC group than those in the non-CVC group (P<0.01). Conclusions Age, dialysis duration, the primary disease, calcium and phosphate, and inflammation- and nutrition-related serum indicators are associated with CVC in MHD patients. CVC significantly increases mortality risk of MHD patients.
3.Chromatin landscape alteration uncovers multiple transcriptional circuits during memory CD8+ T-cell differentiation.
Qiao LIU ; Wei DONG ; Rong LIU ; Luming XU ; Ling RAN ; Ziying XIE ; Shun LEI ; Xingxing SU ; Zhengliang YUE ; Dan XIONG ; Lisha WANG ; Shuqiong WEN ; Yan ZHANG ; Jianjun HU ; Chenxi QIN ; Yongchang CHEN ; Bo ZHU ; Xiangyu CHEN ; Xia WU ; Lifan XU ; Qizhao HUANG ; Yingjiao CAO ; Lilin YE ; Zhonghui TANG
Protein & Cell 2025;16(7):575-601
Extensive epigenetic reprogramming involves in memory CD8+ T-cell differentiation. The elaborate epigenetic rewiring underlying the heterogeneous functional states of CD8+ T cells remains hidden. Here, we profile single-cell chromatin accessibility and map enhancer-promoter interactomes to characterize the differentiation trajectory of memory CD8+ T cells. We reveal that under distinct epigenetic regulations, the early activated CD8+ T cells divergently originated for short-lived effector and memory precursor effector cells. We also uncover a defined epigenetic rewiring leading to the conversion from effector memory to central memory cells during memory formation. Additionally, we illustrate chromatin regulatory mechanisms underlying long-lasting versus transient transcription regulation during memory differentiation. Finally, we confirm the essential roles of Sox4 and Nrf2 in developing memory precursor effector and effector memory cells, respectively, and validate cell state-specific enhancers in regulating Il7r using CRISPR-Cas9. Our data pave the way for understanding the mechanism underlying epigenetic memory formation in CD8+ T-cell differentiation.
CD8-Positive T-Lymphocytes/metabolism*
;
Cell Differentiation
;
Chromatin/immunology*
;
Animals
;
Mice
;
Immunologic Memory
;
Epigenesis, Genetic
;
SOXC Transcription Factors/immunology*
;
NF-E2-Related Factor 2/immunology*
;
Mice, Inbred C57BL
;
Gene Regulatory Networks
;
Enhancer Elements, Genetic
4.Construction of a Prognostic Model for Lysosome-dependent Cell Death in Gastric Cancer Based on Single-cell RNA-seq and Bulk RNA-seq Data.
Peng NI ; Kai Xin GUO ; Tian Yi LIANG ; Xin Shuang FAN ; Yan Qiao HUA ; Yang Ye GAO ; Shuai Yin CHEN ; Guang Cai DUAN ; Rong Guang ZHANG
Biomedical and Environmental Sciences 2025;38(4):416-432
OBJECTIVE:
To identify prognostic genes associated with lysosome-dependent cell death (LDCD) in patients with gastric cancer (GC).
METHODS:
Differentially expressed genes (DEGs) were identified using The Cancer Genome Atlas - Stomach Adenocarcinoma. Weighted gene co-expression network analysis was performed to identify the key module genes associated with LDCD score. Candidate genes were identified by DEGs and key module genes. Univariate Cox regression analysis, and least absolute shrinkage and selection operator regression and multivariate Cox regression analyses were performed for the selection of prognostic genes, and risk module was established. Subsequently, key cells were identified in the single-cell dataset (GSE183904), and prognostic gene expression was analyzed. Cell proliferation and migration were assessed using the Cell Counting Kit-8 assay and the wound healing assay.
RESULTS:
A total of 4,465 DEGs, 95 candidate genes, and 4 prognostic genes, including C19orf59, BATF2, TNFAIP2, and TNFSF18, were identified in the analysis. Receiver operating characteristic curves indicated the excellent predictive power of the risk model. Three key cell types (B cells, chief cells, and endothelial/pericyte cells) were identified in the GSE183904 dataset. C19orf59 and TNFAIP2 exhibited predominant expression in macrophage species, whereas TNFAIP2 evolved over time in endothelial/pericyte cells and chief cells. Functional experiments confirmed that interfering with C19orf59 inhibited proliferation and migration in GC cells.
CONCLUSION
C19orf59, BATF2, TNFAIP2, and TNFSF18 are prognostic genes associated with LDCD in GC. Furthermore, the risk model established in this study showed robust predictive power.
Stomach Neoplasms/pathology*
;
Humans
;
Prognosis
;
Lysosomes/physiology*
;
RNA-Seq
;
Cell Death
;
Single-Cell Analysis
;
Gene Expression Regulation, Neoplastic
;
Cell Proliferation
;
Single-Cell Gene Expression Analysis
5.Untargeted Metabolomics of Plasma From Coronavirus Disease 2019 Patients One Year After Recovery.
Xu-Tong ZHANG ; Ye-Hong YANG ; Yue WU ; Rong HAN ; Qiao-Chu WANG ; Tao DING ; Jiang-Feng LIU ; Jun-Tao YANG
Acta Academiae Medicinae Sinicae 2025;47(4):519-526
Objective To investigate the recovery of plasma metabolism in asymptomatic and mild patients of coronavirus disease 2019(COVID-19)one year after recovery.Methods A total of 174 participants were recruited from the communities in Wuhan,including 80 healthy volunteers and the COVID-19 patients who had recovered for one year.According to the disease severity,the recovered COVID-19 patients were grouped as asymptomatic patients(n=80)and mild patients(n=14).The liquid chromatography mass spectrometry platform was employed to study the metabolomic characteristics of the plasma from all the participants.Results The plasma metabolites in asymptomatic patients and mild patients remained abnormal compared with those in healthy volunteers.Among the differential metabolites in asymptomatic patients and mild patients,some metabolites showed a downward trend only in mild patients,such as phosphatidylethanolamine[20∶3(5Z,8Z,11Z)/P-18∶0],sphingomyelin(d18∶1/24∶0),and cholesteryl(15∶0).The metabolic pathway involving the differential metabolites in mild patients was mainly glycerophospholipid metabolism.Conclusions Even one year after recovery,the mild COVID-19 patients still exhibit metabolic abnormalities.Hence,these patients may experience an extended period of time for recovery.
Humans
;
COVID-19/metabolism*
;
Metabolomics
;
SARS-CoV-2
;
Metabolome
;
Female
;
Male
;
Adult
;
Middle Aged
6.Effect of Shegan Mahuangtang and Its Pungent and Bitter Chinese Herbs on Airway Inflammation and Expression of TRPV1/TAS2R14 in Lung Tissue of Rat Model of Cold Asthma
Yamei YUAN ; Weidong YE ; Yue CHENG ; Qiuhui LI ; Jiaxin LIU ; Jiale QIAO ; Kun WANG ; Xiangming FANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(21):1-9
ObjectiveTo investigate the effects of Shegan Mahuangtang and its pungent and bitter Chinese herbs on the expression of transient receptor potential vanilloid-1 (TRPV1) and bitter taste receptor 14 (TAS2R14) in the lung tissue of the rat model of cold asthma. MethodSeventy SD rats were randomized into 7 groups: normal, model, Shegan Mahuangtang, pungent Chinese herbs, bitter Chinese herbs (6.43 g·kg-1), dexamethasone (0.5 g·kg-1), and Guilong Kechuanning (10 g·kg-1). The rat model of cold asthma was established by intraperitoneal injection and subcutaneous injection of 10% ovalbumin (OVA) and aluminium hydroxide in the limbs, combined with 2% OVA atomization and cold (2-4 ℃) stimulation. The rats were treated with corresponding drugs by gavage and atomization, and the normal and model groups were treated with the same amount of normal saline for 3 weeks. After the last excitation, airway inflammation and cell proliferation were observed by hematoxylin-eosin (HE), periodic acid-Schiff (PAS), and Masson staining of the lung tissue. The levels of interleukin-5 (IL-5), tumor necrosis factor-α (TNF-α), thymic stromal lymphopoietin (TSLP), and transforming growth factor-β1 (TGF-β1) in the serum were measured by enzyme-linked immunosorbent assay (ELISA). The expression of TRPV1 and TAS2R14 was detected by immunofluorescence. The expression of TRPV1, TAS2R14, phospholipase Cβ2 (PLCβ2), B-cell lymphoma-2 (Bcl-2), and α-smooth muscle actin (α-SMA) in the lung tissue was determined by Western blot. ResultCompared with the normal group, the model group showed decreased water intake, food intake, and body weight, increased airway inflammatory cell infiltration, goblet cell proliferation, tissue fibrosis and collagen deposition, elevated levels of IL-5, TNF-α, TSLP, and TGF-β1 in the serum (P<0.01), upregulated expression of TRPV1, PLCβ2, and α-SMA, and downregulated expression of TAS2R14 and Bcl-2 (P<0.05, P<0.01). Compared with model group, Shecgan Mahuangtang, pungent Chinese herbs, and bitter Chinese herbs increased the water intake, food intake, and body weight, reduced the inflammatory cell infiltration and goblet cell proliferation, alleviated tissue fibrosis and collagen deposition, lowered the levels of IL-5, TNF-α, TSLP, and TGF-β1 in the serum (P<0.01), downregulated the expression of TRPV1, PLCβ2, and α-SMA, and upregulated the expression of TAS2R14 and Bcl-2 (P<0.05, P<0.01). ConclusionShegan Mahuangtang and its pungent and bitter Chinese herbs can reduce OVA-induced airway inflammation, downregulate the expression of TRPV1, PLCβ2, and α-SMA, and upregulate the expression of TAS2R14 and Bcl-2 in asthmatic rats. Moreover, bitter Chinese herbs outperformed pungent Chinese herbs, and the combination of them enhanced the therapeutic effect. It is suggested that Shegan Mahuangtang and its pungent and bitter Chinese herbs may ameliorate the OVA-induced airway inflammation by inhibiting TRPV1 and activating TAS2R14.
7.Mechanism of Morinda officinalis iridoid glycosides alleviates bone deterioration in type II collagen-induced arthritic rats through down-regulating GSK-3β to inhibit JAK2/STAT3 and NF-κ B signaling pathway
Yi SHEN ; Yi-qi SUN ; He-ming LI ; Xin-yuan YE ; Jin-man DU ; Rong-hua BAO ; Quan-long ZHANG ; Lu-ping QIN ; Qiao-yan ZHANG
Acta Pharmaceutica Sinica 2024;59(10):2763-2772
This study aimed to investigate the therapeutic effects of
8.Licorice-saponin A3 is a broad-spectrum inhibitor for COVID-19 by targeting viral spike and anti-inflammation
Yang YI ; Wenzhe LI ; Kefang LIU ; Heng XUE ; Rong YU ; Meng ZHANG ; Yang-Oujie BAO ; Xinyuan LAI ; Jingjing FAN ; Yuxi HUANG ; Jing WANG ; Xiaomeng SHI ; Junhua LI ; Hongping WEI ; Kuanhui XIANG ; Linjie LI ; Rong ZHANG ; Xin ZHAO ; Xue QIAO ; Hang YANG ; Min YE
Journal of Pharmaceutical Analysis 2024;14(1):115-127
Currently,human health due to corona virus disease 2019(COVID-19)pandemic has been seriously threatened.The coronavirus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)spike(S)protein plays a crucial role in virus transmission and several S-based therapeutic approaches have been approved for the treatment of COVID-19.However,the efficacy is compromised by the SARS-CoV-2 evolvement and mutation.Here we report the SARS-CoV-2 S protein receptor-binding domain(RBD)inhibitor licorice-saponin A3(A3)could widely inhibit RBD of SARS-CoV-2 variants,including Beta,Delta,and Omicron BA.1,XBB and BQ1.1.Furthermore,A3 could potently inhibit SARS-CoV-2 Omicron virus in Vero E6 cells,with EC50 of 1.016 pM.The mechanism was related to binding with Y453 of RBD deter-mined by hydrogen-deuterium exchange mass spectrometry(HDX-MS)analysis combined with quan-tum mechanics/molecular mechanics(QM/MM)simulations.Interestingly,phosphoproteomics analysis and multi fluorescent immunohistochemistry(mIHC)respectively indicated that A3 also inhibits host inflammation by directly modulating the JNK and p38 mitogen-activated protein kinase(MAPK)path-ways and rebalancing the corresponding immune dysregulation.This work supports A3 as a promising broad-spectrum small molecule drug candidate for COVID-19.
9.Construction of blood quality monitoring indicator system in blood banks of Shandong
Qun LIU ; Xuemei LI ; Yuqing WU ; Zhiquan RONG ; Zhongsi YANG ; Zhe SONG ; Shuhong ZHAO ; Lin ZHU ; Shuli SUN ; Wei ZHANG ; Jinyu HAN ; Xiaojuan FAN ; Hui YE ; Mingming QIAO ; Hua SHEN ; Dunzhu GONGJUE ; Yunlong ZHUANG
Chinese Journal of Blood Transfusion 2024;37(3):249-257
【Objective】 To establish a blood quality monitoring indicator system, in order to continuously improve blood quality and standardized management. 【Methods】 Based on the research of literature and standards, and guided by the key control points of blood collection and supply process, the blood quality monitoring indicator system was developed. Through two rounds of Delphi expert consultation, the indicator content was further revised and improved according to expert opinions after six months of trial implementation. The indicator weight was calculated by questionnaire and analytic hierarchy process. 【Results】 A blood quality monitoring indicator system covering the whole process of blood collection and supply was constructed, including five primary indicators, namely blood donation service, blood component preparation, blood testing, blood supply and quality control, as well as 72 secondary indicators, including definitions, calculation formulas, etc. Two rounds of expert consultation and two rounds of feasibility study meeting were held to revise 17 items and the weight of each indicator was obtained through the analytic hierarchy process. After partial adjustments, a blood quality monitoring indicator system was formed. 【Conclusion】 A blood quality monitoring indicator system covering the whole process of blood collection and supply has been established for the first time, which can effectively evaluate the quality management level of blood banks and coordinate blood quality control activities of blood banks in Shandong like pieces in a chess game, thus improving the standardized management level
10.Application of quality monitoring indicators of blood testing in blood banks of Shandong province
Xuemei LI ; Weiwei ZHAI ; Zhongsi YANG ; Shuhong ZHAO ; Yuqing WU ; Qun LIU ; Zhe SONG ; Zhiquan RONG ; Shuli SUN ; Xiaojuan FAN ; Wei ZHANG ; Jinyu HAN ; Lin ZHU ; Xianwu AN ; Hui ZHANG ; Junxia REN ; Xuejing LI ; Chenxi YANG ; Bo ZHOU ; Haiyan HUANG ; Guangcai LIU ; Ping CHEN ; Hui YE ; Mingming QIAO ; Hua SHEN ; Dunzhu GONGJUE ; Yunlong ZHUANG
Chinese Journal of Blood Transfusion 2024;37(3):258-266
【Objective】 To objectively evaluate the quality control level of blood testing process in blood banks through quantitative monitoring and trend analysis, and to promote the homogenization level and standardized management of blood testing laboratories in blood banks. 【Methods】 A quality monitoring indicator system covering the whole process of blood collection and supply, including blood donation service, blood component preparation, blood testing, blood supply and quality control was established. The questionnaire Quality Monitoring Indicators for Blood Collection and Supply Process with clear definition of indicators and calculation formulas was distributed to 17 blood banks in Shandong province. Quality monitoring indicators of each blood bank from January to December 2022 were collected, and 31 indicators in terms of blood testing were analyzed using SPSS25.0 software. 【Results】 The proportion of unqualified serological tests in 17 blood bank laboratories was 55.84% for ALT, 13.63% for HBsAg, 5.08% for anti HCV, 5.62% for anti HIV, 18.18% for anti TP, and 1.65% for other factors (mainly sample quality). The detection unqualified rate and median were (1.23±0.57)% and 1.11%, respectively. The ALT unqualified rate and median were (0.74±0.53)% and 0.60%, respectively. The detection unqualified rate was positively correlated with ALT unqualified rate (r=0.974, P<0.05). The unqualified rate of HBsAg, anti HCV, anti HIV and anti TP was (0.15±0.09)%, (0.05±0.04)%, (0.06±0.03)% and (0.20±0.05)% respectively. The average unqualified rate, average hemolysis rate, average insufficient volume rate and the abnormal hematocrit rate of samples in 17 blood bank laboratories was 0.21‰, 0.08‰, 0.01‰ and 0.02‰ respectively. There were differences in the retest concordance rates of four HBsAg, anti HCV and anti HIV reagents, and three anti TP reagents among 17 blood bank laboratories (P<0.05). The usage rate of ELISA reagents was (114.56±3.30)%, the outage rate of ELISA was (10.23±7.05) ‰, and the out of range rate of ELISA was (0.90±1.17) ‰. There was no correlation between the out of range rate, outrage rate and usage rate (all P>0.05), while the outrage rate was positively correlated with the usage rate (r=0.592, P<0.05). A total of 443 HBV DNA positive samples were detected in all blood banks, with an unqualified rate of 3.78/10 000; 15 HCV RNA positive samples were detected, with an unqualified rate of 0.13/10 000; 5 HIV RNA positive samples were detected, with an unqualified rate of 0.04/10 000. The unqualified rate of NAT was (0.72±0.04)‰, the single NAT reaction rate [(0.39±0.02)‰] was positively correlated with the single HBV DNA reaction rate [ (0.36±0.02) ‰] (r=0.886, P<0.05). There was a difference in the discriminated reactive rate by individual NAT among three blood bank laboratories (C, F, H) (P<0.05). The median resolution rate of 17 blood station laboratories by minipool test was 36.36%, the median rate of invalid batch of NAT was 0.67%, and the median rate of invalid result of NAT was 0.07‰. The consistency rate of ELISA dual reagent detection results was (99.63±0.24)%, and the median length of equipment failure was 14 days. The error rate of blood type testing in blood collection department was 0.14‰. 【Conclusion】 The quality monitoring indicator system for blood testing process in Shandong can monitor potential risks before, during and after the experiment, and has good applicability, feasibility, and effectiveness, and can facilitate the continuous improvement of laboratory quality control level. The application of blood testing quality monitoring indicators will promote the homogenization and standardization of blood quality management in Shandong, and lay the foundation for future comprehensive evaluations of blood banks.

Result Analysis
Print
Save
E-mail