1.Hypoglycemic Effect and Mechanism of ICK Pattern Peptides
Lin-Fang CHEN ; Jia-Fan ZHANG ; Ye-Ning GUO ; Hui-Zhong HUANG ; Kang-Hong HU ; Chen-Guang YAO
Progress in Biochemistry and Biophysics 2025;52(1):50-60
Diabetes is a very complex endocrine disease whose common feature is the increase in blood glucose concentration. Persistent hyperglycemia can lead to blindness, kidney and heart disease, neurodegeneration, and many other serious complications that have a significant impact on human health and quality of life. The number of people with diabetes is increasing yearly. The global diabetes prevalence in 20-79 year olds in 2021 was estimated to be 10.5% (536.6 million), and it will rise to 12.2% (783.2 million) in 2045. The main modes of intervention for diabetes include medication, dietary management, and exercise conditioning. Medication is the mainstay of treatment. Marketed diabetes drugs such as metformin and insulin, as well as GLP-1 receptor agonists, are effective in controlling blood sugar levels to some extent, but the preventive and therapeutic effects are still unsatisfactory. Peptide drugs have many advantages such as low toxicity, high target specificity, and good biocompatibility, which opens up new avenues for the treatment of diabetes and other diseases. Currently, insulin and its analogs are by far the main life-saving drugs in clinical diabetes treatment, enabling effective control of blood glucose levels, but the risk of hypoglycemia is relatively high and treatment is limited by the route of delivery. New and oral anti-diabetic drugs have always been a market demand and research hotspot. Inhibitor cystine knot (ICK) peptides are a class of multifunctional cyclic peptides. In structure, they contain three conserved disulfide bonds (C3-C20, C7-C22, and C15-C32) form a compact “knot” structure, which can resist degradation of digestive protease. Recent studies have shown that ICK peptides derived from legume, such as PA1b, Aglycin, Vglycin, Iglycin, Dglycin, and aM1, exhibit excellent regulatory activities on glucose and lipid metabolism at the cellular and animal levels. Mechanistically, ICK peptides promote glucose utilization by muscle and liver through activation of IR/AKT signaling pathway, which also improves insulin resistance. They can repair the damaged pancrease through activation of PI3K/AKT/Erk signaling pathway, thus lowering blood glucose. The biostability and hypoglycemic efficacy of the ICK peptides meet the requirements for commercialization of oral drugs, and in theory, they can be developed into natural oral anti-diabetes peptide drugs. In this review, the structural properties, activity and mechanism of ICK pattern peptides in regulating glucose and lipid metabolism were summaried, which provided a reference for the development of new oral peptides for diabetes.
2.Immune checkpoint inhibitor-related T-cell-mediated rejection increases the risk of perioperative graft loss after liver transplantation.
Li PANG ; Yutian LIN ; Tao DING ; Yanfang YE ; Kenglong HUANG ; Fapeng ZHANG ; Xinjun LU ; Guangxiang GU ; Haoming LIN ; Leibo XU ; Kun HE ; Kwan MAN ; Chao LIU ; Wenrui WU
Chinese Medical Journal 2025;138(15):1843-1852
BACKGROUND:
Pre-transplant exposure to immune checkpoint inhibitors (ICIs) significantly increases the risk of allograft rejection after liver transplantation (LT); however, whether ICI-related rejection leads to increased graft loss remains controversial. Therefore, this study aimed to investigate the association between ICI-related allograft rejection and perioperative graft loss.
METHODS:
This was a retrospective analysis of adult liver transplant recipients with early biopsy-proven T-cell-mediated rejection (TCMR) at Liver Transplantation Center of Sun Yat-sen Memorial Hospital from June 2019 to September 2024. The pathological features, clinical characteristics, and perioperative graft survival were analyzed.
RESULTS:
Twenty-eight patients who underwent early TCMR between June 2019 and September 2024 were included. Based on pre-LT ICI exposure, recipients were categorized into ICI-related TCMR (irTCMR, n = 12) and conventional TCMR (cTCMR, n = 16) groups. Recipients with irTCMR had a higher median Banff rejection activity index (RAI) (6 vs . 5, P = 0.012) and more aggressive tissue damage and inflammation. Recipients with irTCMR showed higher proportion of treatment resistance, achieving a complete resolution rate of only 8/12 compared to 16/16 for cTCMR. Graft loss occurred in 5/12 of irTCMR recipients within 90 days after LT, with no graft loss in cTCMRs recipients. Cox analysis demonstrated that irTCMR with an ICI washout period of <30 days was an independent risk factor for perioperative graft loss (hazard ratio [HR], 6.540; 95% confidence interval [CI], 1.067-40.067, P = 0.042).
CONCLUSION
IrTCMR is associated with severe pathological features, increased resistance to treatment, and higher graft loss in adult liver transplant recipients.
Humans
;
Liver Transplantation/adverse effects*
;
Male
;
Female
;
Middle Aged
;
Retrospective Studies
;
Graft Rejection/immunology*
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Adult
;
T-Lymphocytes/drug effects*
;
Graft Survival/immunology*
;
Aged
3.Effects of alcoholic extract of Gnaphalium affine on oxidative stress and intestinal flora in rats with chronic obstructive pulmonary disease.
Da-Huai LIN ; Xiang-Li YE ; Guo-Hong YAN ; Kai-Ge WANG ; Yu-Qin ZHANG ; Huang LI
China Journal of Chinese Materia Medica 2025;50(15):4110-4119
The efficacy mechanism of the alcoholic extract of Gnaphalium affine was investigated by observing its influence on oxidative stress and intestinal flora in rats modeled for chronic obstructive pulmonary disease(COPD). UPLC-MS was used to evaluate the quality of the alcoholic extract of G. affine, and 72 rats were randomly divided into six groups, with COPD models established in five groups by cigarette smoke combined with airway drip lipopolysaccharide, and the rats were given the positive drug of Danlong Oral Solution, as well as low-, medium-, and high-doses alcoholic extract of G. affine, respectively. After two weeks of continuous gastric gavage, the body weights and general morphology observations were performed; HE staining and Masson staining were used to verify the effects of the alcoholic extract of G. affine on alveolar inflammation and collagen deposition area in COPD rats; the oxidative stress indexes CAT and GSH in serum and SOD and MDA in lung tissue of the rats were measured, and the mRNA expression of HO-1, Nrf2, and NQO1 were determined by qRT-PCR. The protein expressions of HO-1, Nrf2, and NQO1 were determined by the Western blot method, and the mechanism by which the alcoholic extract of G. affine affected oxidative stress in COPD rats was explored. Finally, the influence of G. affine on the changes in intestinal flora caused by COPD was studied by 16S rRNA sequencing. The results showed that a total of 121 chemical components were identified by UPLC-MS, including 70 positive and 51 negative ion modes. In animal experiments, it was found that the alcoholic extracts of G. affine were able to reduce the percentage of collagen deposition, affect the oxidative stress indexes such as CAT, GSH, SOD, MDA, as well as the mRNA and protein expression of Nrf2, HO-1, and NQO1. The 16S rRNA sequencing results showed an increase in the level of Lactobacillales and a decrease in the level of Desulfovibrio and Desulfovibrionales, suggesting that the alcoholic extracts of G. affine could reverse the changes in intestinal flora caused by COPD. In conclusion, the alcoholic extracts of G. affine may exert anti-COPD effects by affecting the oxidative stress pathway and modulating the changes in intestinal flora.
Animals
;
Oxidative Stress/drug effects*
;
Pulmonary Disease, Chronic Obstructive/genetics*
;
Rats
;
Male
;
Gastrointestinal Microbiome/drug effects*
;
Rats, Sprague-Dawley
;
Drugs, Chinese Herbal/administration & dosage*
;
NF-E2-Related Factor 2/metabolism*
;
Humans
;
Lung/metabolism*
4.Ultra-early administration of eculizumab in a child with atypical hemolytic uremic syndrome: a case report.
Dan-Dan GUO ; Yi-Xin XIAO ; Wei-Rui WANG ; Xiao-Lu DENG ; Ye-Hong HUANG
Chinese Journal of Contemporary Pediatrics 2025;27(11):1408-1413
A 10-year-old girl was admitted with a 38-hour history of widespread subcutaneous petechiae and hematuria and a 6-hour history of jaundice and oliguria. Physical examination revealed widespread subcutaneous petechiae and jaundice of the skin and sclera. Laboratory tests showed anemia, thrombocytopenia, acute kidney injury, and markedly elevated lactate dehydrogenase. Thrombotic microangiopathy was initially diagnosed, with a high suspicion of atypical hemolytic uremic syndrome (aHUS). Eculizumab was initiated within 9 hours of admission (within 48 hours of onset). After the first infusion, hemolysis rapidly ceased, and the platelet count and renal function gradually returned to normal. Whole-exome sequencing identified homozygous deletions of CFHR1 exon 2 and CFHR4 exon 1. aHUS typically has abrupt onset and rapid progression. Clinicians should maintain high suspicion for aHUS when the triad of thrombocytopenia, microangiopathic hemolytic anemia, and acute kidney injury is present. Ultra-early eculizumab (within 48 hours of onset) rapidly blocks complement-mediated thrombotic microangiopathy, reverses organ injury, and improves long-term prognosis. Additionally, complement-related genetic testing is important for etiological clarification and individualized determination of eculizumab treatment duration.
Humans
;
Antibodies, Monoclonal, Humanized/administration & dosage*
;
Female
;
Atypical Hemolytic Uremic Syndrome/drug therapy*
;
Child
;
Complement C3b Inactivator Proteins
6.Discovery of a novel thiophene carboxamide analogue as a highly potent and selective sphingomyelin synthase 2 inhibitor for dry eye disease therapy.
Jintong YANG ; Yiteng LU ; Kexin HU ; Xinchen ZHANG ; Wei WANG ; Deyong YE ; Mingguang MO ; Xin XIAO ; Xichen WAN ; Yuqing WU ; Shuxian ZHANG ; He HUANG ; Zhibei QU ; Yimin HU ; Yu CAO ; Jiaxu HONG ; Lu ZHOU
Acta Pharmaceutica Sinica B 2025;15(1):392-408
Dry eye disease (DED) is a prevalent and intractable ocular disease induced by a variety of causes. Elevated sphingomyelin (SM) levels and pro-inflammatory cytokines were detected on the ocular surface of DED patients, particularly in the meibomian glands. Sphingomyelin synthase 2 (SMS2), one of the proteins involved in SM synthesis, would light a novel way of developing a DED therapy strategy. Herein, we report the design and optimization of a series of novel thiophene carboxamide derivatives to afford 14l with an improved highly potent inhibitory activity on SM synthesis (IC50, SMS2 = 28 nmol/L). Moreover, 14l exhibited a notable protective effect of anti-inflammation and anti-apoptosis on human corneal epithelial cells (HCEC) under TNF-α-hyperosmotic stress conditions in vitro, with an acceptable ocular specific distribution (corneas and meibomian glands) and pharmacokinetics (PK) profiles (t 1/2, cornea = 1.11 h; t 1/2, meibomian glands = 4.32 h) in rats. Furthermore, 14l alleviated the dry eye symptoms including corneal fluorescein staining scores and tear secretion in a dose-dependent manner in mice. Mechanically, 14l reduced the mRNA expression of Tnf-α, Il-1β and Mmp-9 in corneas, as well as the proportion of very long chain SM in meibomian glands. Our findings provide a new strategy for DED therapy based on selective SMS2 inhibitors.
7.Anti-SARS-CoV-2 prodrug ATV006 has broad-spectrum antiviral activity against human and animal coronaviruses.
Tiefeng XU ; Kun LI ; Siyao HUANG ; Konstantin I IVANOV ; Sidi YANG ; Yanxi JI ; Hanwei ZHANG ; Wenbin WU ; Ye HE ; Qiang ZENG ; Feng CONG ; Qifan ZHOU ; Yingjun LI ; Jian PAN ; Jincun ZHAO ; Chunmei LI ; Xumu ZHANG ; Liu CAO ; Deyin GUO
Acta Pharmaceutica Sinica B 2025;15(5):2498-2510
Coronavirus-related diseases pose a significant challenge to the global health system. Given the diversity of coronaviruses and the unpredictable nature of disease outbreaks, the traditional "one bug, one drug" paradigm struggles to address the growing number of emerging crises. Therefore, there is an urgent need for therapeutic agents with broad-spectrum anti-coronavirus activity. Here, we provide evidence that ATV006, an anti-SARS-CoV-2 nucleoside analog targeting RNA-dependent RNA polymerase (RdRp), has broad antiviral activity against human and animal coronaviruses. Using mouse hepatitis virus (MHV) and human coronavirus NL63 (HCoV-NL63) as a model, we show that ATV006 has potent prophylactic and therapeutic activity against murine coronavirus infection in vivo. Remarkably, ATV006 successfully inhibits viral replication in mice even when administered 96 h after infection. Due to its oral bioavailability and potency against multiple coronaviruses, ATV006 has the potential to become a useful antiviral agent against SARS-CoV-2 and other circulating and emerging coronaviruses in humans and animals.
8.Dimethyl fumarate modulates M1/M2 macrophage polarization to ameliorate periodontal destruction by increasing TUFM-mediated mitophagy.
Liang CHEN ; Pengxiao HU ; Xinhua HONG ; Bin LI ; Yifan PING ; ShuoMin CHEN ; Tianle JIANG ; Haofu JIANG ; Yixin MAO ; Yang CHEN ; Zhongchen SONG ; Zhou YE ; Xiaoyu SUN ; Shufan ZHAO ; Shengbin HUANG
International Journal of Oral Science 2025;17(1):32-32
Periodontitis is a common oral disease characterized by progressive alveolar bone resorption and inflammation of the periodontal tissues. Dimethyl fumarate (DMF) has been used in the treatment of various immune-inflammatory diseases due to its excellent anti-inflammatory and antioxidant functions. Here, we investigated for the first time the therapeutic effect of DMF on periodontitis. In vivo studies showed that DMF significantly inhibited periodontal destruction, enhanced mitophagy, and decreased the M1/M2 macrophage ratio. In vitro studies showed that DMF inhibited macrophage polarization toward M1 macrophages and promoted polarization toward M2 macrophages, with improved mitochondrial function, inhibited oxidative stress, and increased mitophagy in RAW 264.7 cells. Furthermore, DMF increased intracellular mitochondrial Tu translation elongation factor (TUFM) levels to maintain mitochondrial homeostasis, promoted mitophagy, and modulated macrophage polarization, whereas TUFM knockdown decreased the protective effect of DMF. Finally, mechanistic studies showed that DMF increased intracellular TUFM levels by protecting TUFM from degradation via the ubiquitin-proteasomal degradation pathway. Our results demonstrate for the first time that DMF protects mitochondrial function and inhibits oxidative stress through TUFM-mediated mitophagy in macrophages, resulting in a shift in the balance of macrophage polarization, thereby attenuating periodontitis. Importantly, this study provides new insights into the prevention of periodontitis.
Dimethyl Fumarate/pharmacology*
;
Mitophagy/drug effects*
;
Animals
;
Mice
;
Macrophages/metabolism*
;
Periodontitis/prevention & control*
;
RAW 264.7 Cells
;
Oxidative Stress/drug effects*
;
Peptide Elongation Factor Tu/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Mitochondria/drug effects*
9.Expert consensus on the diagnosis and treatment of cemental tear.
Ye LIANG ; Hongrui LIU ; Chengjia XIE ; Yang YU ; Jinlong SHAO ; Chunxu LV ; Wenyan KANG ; Fuhua YAN ; Yaping PAN ; Faming CHEN ; Yan XU ; Zuomin WANG ; Yao SUN ; Ang LI ; Lili CHEN ; Qingxian LUAN ; Chuanjiang ZHAO ; Zhengguo CAO ; Yi LIU ; Jiang SUN ; Zhongchen SONG ; Lei ZHAO ; Li LIN ; Peihui DING ; Weilian SUN ; Jun WANG ; Jiang LIN ; Guangxun ZHU ; Qi ZHANG ; Lijun LUO ; Jiayin DENG ; Yihuai PAN ; Jin ZHAO ; Aimei SONG ; Hongmei GUO ; Jin ZHANG ; Pingping CUI ; Song GE ; Rui ZHANG ; Xiuyun REN ; Shengbin HUANG ; Xi WEI ; Lihong QIU ; Jing DENG ; Keqing PAN ; Dandan MA ; Hongyu ZHAO ; Dong CHEN ; Liangjun ZHONG ; Gang DING ; Wu CHEN ; Quanchen XU ; Xiaoyu SUN ; Lingqian DU ; Ling LI ; Yijia WANG ; Xiaoyuan LI ; Qiang CHEN ; Hui WANG ; Zheng ZHANG ; Mengmeng LIU ; Chengfei ZHANG ; Xuedong ZHOU ; Shaohua GE
International Journal of Oral Science 2025;17(1):61-61
Cemental tear is a rare and indetectable condition unless obvious clinical signs present with the involvement of surrounding periodontal and periapical tissues. Due to its clinical manifestations similar to common dental issues, such as vertical root fracture, primary endodontic diseases, and periodontal diseases, as well as the low awareness of cemental tear for clinicians, misdiagnosis often occurs. The critical principle for cemental tear treatment is to remove torn fragments, and overlooking fragments leads to futile therapy, which could deteriorate the conditions of the affected teeth. Therefore, accurate diagnosis and subsequent appropriate interventions are vital for managing cemental tear. Novel diagnostic tools, including cone-beam computed tomography (CBCT), microscopes, and enamel matrix derivatives, have improved early detection and management, enhancing tooth retention. The implementation of standardized diagnostic criteria and treatment protocols, combined with improved clinical awareness among dental professionals, serves to mitigate risks of diagnostic errors and suboptimal therapeutic interventions. This expert consensus reviewed the epidemiology, pathogenesis, potential predisposing factors, clinical manifestations, diagnosis, differential diagnosis, treatment, and prognosis of cemental tear, aiming to provide a clinical guideline and facilitate clinicians to have a better understanding of cemental tear.
Humans
;
Dental Cementum/injuries*
;
Consensus
;
Diagnosis, Differential
;
Cone-Beam Computed Tomography
;
Tooth Fractures/therapy*
10.Novel hormone therapies for advanced prostate cancer: Understanding and countering drug resistance.
Zhipeng WANG ; Jie WANG ; Dengxiong LI ; Ruicheng WU ; Jianlin HUANG ; Luxia YE ; Zhouting TUO ; Qingxin YU ; Fanglin SHAO ; Dilinaer WUSIMAN ; William C CHO ; Siang Boon KOH ; Wei XIONG ; Dechao FENG
Journal of Pharmaceutical Analysis 2025;15(9):101232-101232
Prostate cancer is the most prevalent malignant tumor among men, ranking first in incidence and second in mortality globally. Novel hormone therapies (NHT) targeting the androgen receptor (AR) pathway have become the standard of care for metastatic prostate cancer. This review offers a comprehensive overview of NHT, including abiraterone, enzalutamide, apalutamide, darolutamide, and rezvilutamide, which have demonstrated efficacy in delaying disease progression and improving patient survival and quality of life. Nevertheless, resistance to NHT remains a critical challenge. The mechanisms underlying resistance are complex, involving AR gene amplification, mutations, splice variants, increased intratumoral androgens, and AR-independent pathways such as the glucocorticoid receptor, neuroendocrine differentiation, DNA repair defects, autophagy, immune evasion, and activation of alternative signaling pathways. This review discusses these resistance mechanisms and examines strategies to counteract them, including sequential treatment with novel AR-targeted drugs, chemotherapy, poly ADP-ribose polymerase inhibitors, radionuclide therapy, bipolar androgen therapy, and approaches targeting specific resistance pathways. Future research should prioritize elucidating the molecular basis of NHT resistance, optimizing existing therapeutic strategies, and developing more effective combination regimens. Additionally, advanced sequencing technologies and resistance research models should be leveraged to identify novel therapeutic targets and improve drug delivery efficiencies. These advancements hold the potential to overcome NHT resistance and significantly enhance the management and prognosis of patients with advanced prostate cancer.

Result Analysis
Print
Save
E-mail