1.Digital three-dimensional model reconstruction of the cardiac cavity
Zhongzhong CHEN ; Jianfei ZHANG ; Zhijian SU ; Dengwei LIAN ; Yaru YANG ; Huiyu ZHU
Chinese Journal of Tissue Engineering Research 2014;(49):7967-7973
BACKGROUND:Digital three-dimensional model which can reflect the fine structure of the chambers inside heart not only enhances the understanding of cardiac physiology, but also provides basic medical data for the study of cardiac electrophysiology simulation and endocardial electrophysiological mapping navigation. OBJECTIVE:To construct the digital three-dimensional model of cardiac cavity from sectional data and in conformity with the actual anatomical structure. METHODS:Image segmentation was accomplished in MATLAB environment. Firstly, registration of human cardiac cavity slice dataset was realized. Secondly, classifying each composition was achieved by clustering method according to color characteristics of the image. Then, both cardiac cavity and related connected region was distinguished by region growing method. At last, the processed image was reconstructed through dedicated medical processing software into three-dimensional model of the cardiac cavity. RESULTS AND CONCLUSION:The proposed method could reconstruct quite exquisite three-dimensional model of the cardiac cavity. In models, left and right atrial and ventricular structure was clear. Aorta and superior vena cava were visible. Three tricuspid and mitral valve were also observed. Results indicated that reconstructed model can reflect the anatomical characteristics of cardiac cavity accurately, and provide basic medical data for the study on electrophysiological simulation and endocardial electric mapping.
2.Inhibition of lncRNA KCNQ1OT1 Improves Apoptosis and Chemotherapy Drug Response in Small Cell Lung Cancer by TGF-β1 Mediated Epithelial-to-Mesenchymal Transition
Deyu LI ; Qin TONG ; Yuane LIAN ; Zhizhong CHEN ; Yaru ZHU ; Weimei HUANG ; Yang WEN ; Qiongyao WANG ; Shumei LIANG ; Man LI ; Jianjing ZHENG ; Zhenhua LIU ; Huanxin LIU ; Linlang GUO
Cancer Research and Treatment 2021;53(4):1042-1056
Purpose:
Drug resistance is one of the main causes of chemotherapy failure in patients with small cell lung cancer (SCLC), and extensive biological studies into chemotherapy drug resistance are required.
Materials and Methods:
In this study, we performed lncRNA microarray, in vitro functional assays, in vivo models and cDNA microarray to evaluate the impact of lncRNA in SCLC chemoresistance.
Results:
The results showed that KCNQ1OT1 expression was upregulated in SCLC tissues and was a poor prognostic factor for patients with SCLC. Knockdown of KCNQ1OT1 inhibited cell proliferation, migration, chemoresistance and promoted apoptosis of SCLC cells. Mechanistic investigation showed that KCNQ1OT1 can activate transforming growth factor-β1 mediated epithelial-to-mesenchymal transition in SCLC cells.
Conclusion
Taken together, our study revealed the role of KCNQ1OT1 in the progression and chemoresistance of SCLC, and suggested KCNQ1OT1 as a potential diagnostic and prognostic biomarker in SCLC clinical management.
3.Expression characteristics of signaling molecules associated with innate immune response induced by HSV1 and HSV2 in respiratory and vaginal epithelial cells
Yun LIAO ; Yaru LIAN ; Qihan LI ; Shengtao FAN ; Lei LIU ; Jianbin WANG ; Min FENG ; Jiawei LIU ; Ying ZHANG
Chinese Journal of Microbiology and Immunology 2018;38(9):641-651
Objective To investigate the influences of herpes simplex virus 1 and 2 ( HSV1 and HSV2) infection on the expression of signaling molecules associated with innate immune response in respira-tory and vaginal epithelial cells for bettering understanding of HSV infection and pathological characteristics in the primary infection site, namely mucosal epithelial tissues. Methods KMB17 and VK2 cells were in-fected with HSV. Changes in cell morphology and inner structure after HSV infection were observed under optical microscope and scanning electron microscope, respectively. Viral proliferation in KMB17 and VK2 cells was detected by plaque assay, microcytopathic assay and real-time quantitative PCR. Expression of sig-naling molecules associated with innate immune response in virus-infected KMB17 and VK2 cells were ana-lyzed by real-time quantitative PCR. Results Both HSV1 and HSV2 could infect KMB17 and VK2 cells, and cause damage to cell morphology and inner structure after 12 hours. Both of the two viruses formed simi-lar plaque on the single layer of KMB17 and VK2 cells, although HSV2 proliferated slower than HSV1. There were differences in the expression of signaling molecules associated with innate immune response in-duced by the two viruses in KMB17 and VK2 cells. Conclusion Both HSV1 and HSV2 could infect and proliferate in epithelial cells ( KMB17 and VK2 cells) . Although there were slight differences in viral prolif-eration between them, significant differences in the expression of signaling molecules associated with innate immune response induced by the two viruses were observed.