1.One step production of isomalto-oligosaccharides by engineered Yarrowia lipolytica yeast co-displayed β-amylase and α-transglucosidase.
Dawen LIU ; Hairong CHENG ; Zixin DENG
Chinese Journal of Biotechnology 2019;35(1):121-132
Isomalto-oligosaccharides (IMO) have good physiochemical properties and excellent physiological functions to make it widely used in food, medicine, feed, cosmetics and other industries. However, the procedures for industrial production of IMO are complicated. Therefore, it is necessary to develop an economical and easy-to-operate method. The genes encoding for β-amylase and α-transglucosidase were fused and co-displayed on the yeast cell surface of Yarrowia lipolytica which can convert liquefied starch to IMO in one step. The highest IMO purity of 75.3% was obtained using the displayed fusion-enzyme at 50 °C. This method showed potential application in IMO production.
Oligosaccharides
;
Starch
;
Yarrowia
;
beta-Amylase
2.A case of Yarrowia lipolytica fungemia after raw beef ingestion.
Ki Woon KANG ; Hee Jung YOON ; Sung Hee JUNG ; Soung Hoon CHO ; Ho Yong KIM ; Young Wook YOO
Korean Journal of Medicine 2008;74(5):566-569
Candida lipolytica is also called Yarrowia lipolytica, and this is now microbiologically classified as a member of the Yarrowia genus. Y. lipolytica is a rare opportunistic pathogen that was first isolated in 1976 from a patient with traumatic ocular candidiasis. Five cases of infant patients were reported in 2000 in Korea for the first time, and then in 2001 a case was reported from an AML patient. No more cases have been reported since then. The authors experienced the case of a patient with blood culture positivity for Y. lipolytica and this patient had a previous history of raw beef ingestion and long term antibiotics therapy. Thus, we report on this case along with a review of the literature.
Anti-Bacterial Agents
;
Candidiasis
;
Eating
;
Fungemia
;
Humans
;
Infant
;
Korea
;
Yarrowia
3.Isolation, Identification and Characterization of a Antidementia Acetylcholinesterase Inhibitor-Producing Yarrowia lipolytica S-3.
Min Gu KANG ; Min Ho YOON ; Young Jun CHOI ; Jong Soo LEE
Mycobiology 2012;40(1):42-46
This report describes the isolation and identification of a potent acetylcholinesterase (AChE) inhibitor-producing yeasts. Of 731 species of yeast strain, the S-3 strain was selected as a potent producer of AChE inhibitor. The selected S-3 strain was investigated for its microbiological characteristics. The S-3 strain was found to be short-oval yeast that did not form an ascospore. The strain formed a pseudomycelium and grew in yeast malt medium containing 50% glucose and 10% ethanol. Finally, the S-3 strain was identified by its physiological characteristics and 26S ribosomal DNA sequences as Yarrowia lipolytica S-3.
Acetylcholinesterase
;
DNA, Ribosomal
;
Ethanol
;
Glucose
;
Sprains and Strains
;
Yarrowia
;
Yeasts
4.Biosynthesis of natural products by non-conventional yeasts.
Zhilan QIAN ; Lili SONG ; Qi LIU ; Xiulong GONG ; Yijia KANG ; Ziyu HE ; Haoyu LONG ; Menghao CAI
Chinese Journal of Biotechnology 2023;39(6):2284-2312
Non-conventional yeasts such as Yarrowia lipolytica, Pichia pastoris, Kluyveromyces marxianus, Rhodosporidium toruloides and Hansenula polymorpha have proven to be efficient cell factories in producing a variety of natural products due to their wide substrate utilization spectrum, strong tolerance to environmental stresses and other merits. With the development of synthetic biology and gene editing technology, metabolic engineering tools and strategies for non-conventional yeasts are expanding. This review introduces the physiological characteristics, tool development and current application of several representative non-conventional yeasts, and summarizes the metabolic engineering strategies commonly used in the improvement of natural products biosynthesis. We also discuss the strengths and weaknesses of non-conventional yeasts as natural products cell factories at current stage, and prospects future research and development trends.
Yeasts/genetics*
;
Yarrowia/metabolism*
;
Gene Editing
;
Metabolic Engineering
5.Production of carboxylic acids by metabolically engineered Yarrowia lipolytica: a review.
Lanxin RONG ; Shiqi LIU ; Kun ZHU ; Jing KONG ; Lin MIAO ; Shuhui WANG ; Dongguang XIAO ; Aiqun YU
Chinese Journal of Biotechnology 2022;38(4):1360-1372
Yarrowia lipolytica is a non-conventional yeast with unique physiological and metabolic characteristics. It is suitable for production of various products due to its natural ability to utilize a variety of inexpensive carbon sources, excellent tolerance to low pH, and strong ability to secrete metabolites. Currently, Y. lipolytica has been demonstrated to produce a wide range of carboxylic acids with high efficiency. This article summarized the progress in engineering Y. lipolytica to produce various carboxylic acids by using metabolic engineering and synthetic biology approaches. The current bottlenecks and solutions for high-level production of carboxylic acids by engineered Y. lipolytica were also discussed, with the aim to provide useful information for relevant studies in this field.
Carboxylic Acids/metabolism*
;
Metabolic Engineering
;
Synthetic Biology
;
Yarrowia/metabolism*
6.Production of the Acetylcholinesterase Inhibitor from Yarrowia lipolytica S-3.
Dae Hyung LEE ; Ji Su LEE ; Sung Hun YI ; Jong Soo LEE
Mycobiology 2008;36(2):102-105
The acetylcholinesterase (AChE) inhibitor of Yarrowia lipolytica S-3 was maximally produced when it was incubated at 30degrees C for 36 h in an optimal medium containing 1% yeast extract, 2% peptone and 2% glucose, with an initial pH 6.0. The final AChE inhibitory activity under these conditions was an IC50 value of 64 mg/ml. After partial purification of the AChE inhibitor by means of systematic solvent extraction, the final IC50 value of the partially purified AChE inhibitor was 0.75 mg/ml. We prepared a test product by using the partially purified AChE inhibitor and then determined its stability for the development of a new antidementia commercial product. The test product was stable at room temperature for 15 weeks.
Acetylcholinesterase
;
Glucose
;
Hydrogen-Ion Concentration
;
Inhibitory Concentration 50
;
Peptones
;
Yarrowia
;
Yeasts
7.Advances in metabolic engineering of non-conventional yeasts.
Liqiu SU ; Ge ZHANG ; Zhen YAO ; Peixin LIANG ; Zongjie DAI ; Qinhong WANG
Chinese Journal of Biotechnology 2021;37(5):1659-1676
Over the past 30 years, Yarrowia lipolytica, Kluyveromyces, Pichia, Candida, Hansenula and other non-conventional yeasts have attracted wide attention because of their desirable phenotypes, such as rapid growth, capability of utilizing multiple substrates, and stress tolerance. A variety of synthetic biology tools are being developed for exploitation of their unique phenotypes, making them potential cell factories for the production of recombinant proteins and renewable bio-based chemicals. This review summarizes the gene editing tools and the metabolic engineering strategies recently developed for non-conventional yeasts. Moreover, the challenges and future perspectives for developing non-conventional yeasts into efficient cell factories for the production of useful products through metabolic engineering are discussed.
Gene Editing
;
Metabolic Engineering
;
Pichia/genetics*
;
Synthetic Biology
;
Yarrowia/genetics*
;
Yeasts
8.Advances in abscisic acid biosynthesis.
Kexin LI ; Ying WANG ; Mingdong YAO ; Wenhai XIAO
Chinese Journal of Biotechnology 2023;39(6):2190-2203
Abscisic acid, a plant hormone that inhibits growth, is a key factor in balancing plant endogenous hormones and regulating growth and metabolism. Abscisic acid can improve the drought resistance and salt tolerance of crops, reduce fruit browning, reduce the incidence rate of malaria and stimulate insulin secretion, so it has a broad application potential in agriculture and medicine. Compared with traditional plant extraction and chemical synthesis, abscisic acid synthesis by microorganisms is an economic and sustainable route. At present, a lot of progress has been made in the synthesis of abscisic acid by natural microorganisms such as Botrytis cinerea and Cercospora rosea, while the research on the synthesis of abscisic acid by engineered microorganisms is rarely reported. Saccharomyces cerevisiae, Yarrowia lipolytica and Escherichia coli are common hosts for heterologous synthesis of natural products due to their advantages of clear genetic background, easy operation and friendliness for industrial production. Therefore, the heterologous synthesis of abscisic acid by microorganisms is a more promising production method. The author reviews the research on the heterologous synthesis of abscisic acid by microorganisms from five aspects: selection of chassis cells, screening and expression enhancement of key enzymes, regulation of cofactors, enhancement of precursor supply and promotion of abscisic acid efflux. Finally, the future development direction of this field is prospected.
Abscisic Acid/metabolism*
;
Plant Growth Regulators/metabolism*
;
Plants/metabolism*
;
Yarrowia/metabolism*
9.The recent advances in developing gene editing and expression tools and the synthesis of natural products in Yarrowia lipolytica.
Jinhong ZHANG ; Zhiyong CUI ; Qingsheng QI ; Jin HOU
Chinese Journal of Biotechnology 2022;38(2):478-505
Yarrowia lipolytica, as an important oleaginous yeast, has been widely used in metabolic engineering. Y. lipolytica is considered as an ideal host for the production of natural products such as terpenes, polyketides and flavonoids, due to its ability to utilize a variety of hydrophobic substrates, high stress tolerance to acid and salt, high flux of tricarboxylic acid cycle and the ability in providing abundant the common precursor acetyl-CoA. Recently, more and more tools for genetic editing, gene expression and regulation has been developed in Y. lipolytica, which facilitate the metabolic engineering of Y. lipolytica for bio-manufacturing. In this review, we summarized the recent progresses in developing gene expression and natural product synthesis in Y. lipolytica, and also discussed the challenges and possible solutions in heterologous synthesis of natural products in this yeast.
Biological Products/metabolism*
;
Gene Editing
;
Metabolic Engineering
;
Polyketides/metabolism*
;
Yarrowia/metabolism*
10.Expression of phytase gene phyA in Yarrowia lipolytica po1h.
Yun CHEN ; You ZOU ; Yiding WANG ; Lixin MA
Chinese Journal of Biotechnology 2010;26(5):610-615
Using the polymmerse chain reaction (PCR), we amplified the phytase gene phyA from Pichia pastoris GS115-phyA in Aspergillus niger NRRL3135 without the signal peptide sequence and intron sequence,. Then, it was cloned into pINA1297 vector to generate a recombinant vector of pINA1297-phyA. pINA1297-phyA was linearized and transformed into Yarrowia lipolytica po1h by the lithium acetate method. The positive transformants were obtained by YNB(casa) and PPB plates, after induced in YM medium at 28 degrees C for 6 day. The activity of the expressed phytase phyA reached 636.23 U/mL. The molecular weight of the enzyme was 130 kDa measured with SDS-PAGE analysis, whereas its molecular size reduced to 51 kDa after deglycosylation which is correspond with theoretical value. The enzymatic analysis of the recombinant phytase phyA revealed its optimal pH and temperature was 5.5 and 55 degrees C, which had high activity after incubated in pH ranged from 2.0 to 8.0 for 1 h. Moreover, its activity remained 86.08% after exposure to 90 degrees C for 10 min. It also was resistant to pepsin or trypsin treatment.
6-Phytase
;
biosynthesis
;
genetics
;
Aspergillus niger
;
genetics
;
metabolism
;
Pichia
;
enzymology
;
genetics
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
Yarrowia
;
genetics
;
metabolism