1.Study on functional recovery of hypoxic-ischemic brain injury by Rg1-induced NSCs.
Yingbo LI ; Liu TU ; Di CHEN ; Rong JIANG ; Yaping WANG ; Shall WANG
China Journal of Chinese Materia Medica 2012;37(4):509-514
OBJECTIVETo observe the effect of Rg1-induced NSCs in treatment of neonatal rat model with hypoxiaischemia.
METHODThe neonatal rat model of HIE was established and assessed by using TTC staining and behavioral observation, then Rg1-induced NSCs was transplanted into the neonatal rat of HIE by lateral ventricle injection. Water maze test and somatosensory evoked potential were detected to observe brain function and the immunohistochemistry was done to assess growth and differentiation about transplanted NSCs a month after transplanted.
RESULTThe transplantation of Rg1-induced NSCs could significantly shorten incubation period, swimming distance, exploration time of target quadrants of water maze test and incubation period and amplitude of somatosensory evoked potentials. Additionally, the concentrated expression appeared in the hippocampus and grew around the ischemic injury area in transplantation group.
CONCLUSIONTransplantation of Rg1-induced NSCs play a better role in the treatment of neonatal HIE rats.
Animals ; Cell Differentiation ; drug effects ; Evoked Potentials ; Female ; Ginsenosides ; pharmacology ; Hippocampus ; pathology ; physiopathology ; Hypoxia-Ischemia, Brain ; pathology ; physiopathology ; therapy ; Male ; Maze Learning ; Neural Stem Cells ; cytology ; drug effects ; transplantation ; Rats ; Rats, Sprague-Dawley ; Recovery of Function ; physiology
2.Practice and strategy considerations for hospital talents introduction
Jianfeng TU ; Yaping ZHANG ; Yue YANG ; Zhiming HU ; Dongsheng HUANG
Chinese Journal of Hospital Administration 2018;34(1):44-47
The paper probed into key challenges in talents introduction of hospitals ,especially introduction strategy and practical considerations.In its"MVPPS"(Money ,Value ,Platform ,Promise , Service)theory framework ,V(value)is the core ,and P(platform)is the key ,while P(promise)and M (money ,remuneration)are the cornerstone.The hospital can attract excellent talents by means of common value ,reasonable material conditions ,ideal development platform and service ,and promises fulfilled ,thus achieving fast disciplines development .
3.Study of glycosides from Piper sintenense Hatusima
Penghuang TU ; Zhiren YAO ; Meiling JIN ; Guanyu NING ; Yaping HUANG ; Ke PAN ; Zhiqi YIN
Journal of China Pharmaceutical University 2024;55(2):202-208
In order to investigate the chemical constituents of glycosides in Piper sintenense Hatusima, column chromatographic techniques such as silica gel, ODS, MCI GEL CHP20P, Sephadex LH-20, and semi-preparative high performance liquid chromatography were used to afford nine glycosides from the n-butanol part of the 95% ethanol extract of Piper sintenense Hatusima. Based on the physicochemical properties and NMR data, the above compounds were identified as (2S)-2-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-1-propanone-2-O-β-D-glucopyranoside (1), 2-phenylethyl β-D-glucopyranoside (2), benzyl α-L-arabinopyranosyl-(1''→6')-β-D-glucopyranoside (3), benzyl β-D-xylopyanosyl-(1''→6')-β-D-glucopyranoside (4), phenethyl β-D-apiofuranosyl-(1''→ 2')-β-D-glucopyranoside(5), salidroside (6), phenethanol β-D-xylopyanosyl-(1''→6')-β-D-glucopyranoside (7), (Z)-hexenyl-O-α-L-arabinopyranosyl-(1''→6')-O-β-D-glucopyranoside (8), (Z)-hexenyl-O-β-D-xylopyanosyl-(1''→6')-O-β-D-glucopyranoside (9). Compound 1 was identified as a new compound, and compounds 3-9 were isolated from the genus Piper for the first time.
4.Effects and mechanism of rat epidermal stem cells treated with exogenous vascular endothelial growth factor on healing of deep partial-thickness burn wounds in rats
Yan SHI ; Longxiang TU ; Qin DENG ; Yaping ZHANG ; Yanghong HU ; Dewu LIU
Chinese Journal of Burns 2020;36(3):195-203
Objective:To explore the effects and mechanism of rat epidermal stem cells (ESCs) that were treated with exogenous vascular endothelial growth factor (VEGF) on the healing of deep partial-thickness burn wounds in rats.Methods:ESCs were isolated and cultured from the trunk skin of a 3-month-old female Sprague-Dawley (SD) rat. The third passage of cultured cells in the logarithmic growth phase was used in experiments (1)-(3). (1) The cells were routinely cultured in keratinocytes-specified serum-free medium (K-SFM) (the same routine culture condition below). The morphology of cells cultured for 3 and 5 days was observed under the inverted optical microscope. (2) After 24 hours in routine culture, the expression of cell surface markers CD44, CD45, CD11b, and CD11c was detected by flow cytometer, with triplicate samples. (3) Four batches of cells were collected, and each batch was divided into VEGF group or blank control group according to the random number table. The cells in blank control group were routinely cultured, while the cells in VEGF group were cultured in K-SFM containing VEGF in the final mass concentration of 10 ng/mL. The protein expressions of cytokeratin 19 (CK19) and CK10 in cells cultured for 10 days were detected by Western blotting. The Nanog mRNA expression in cells cultured for 0 (immediately), 2, 4, 6, 8, and 10 day (s) was detected by real-time fluorescent quantitative reverse transcription polymerase chain reaction. The absorbance value was detected with cell counting kit-8 in cells cultured for 2, 4, 6, 8, and 10 days. The clone number of more than 50 cells was observed and counted under the optical microscope in cells cultured for 10 days, and the cell colony formation rate was calculated. Three samples at each time point was analysed. (4) Thirty-six 3-month-old SD rats (either male or female) were used for the study, and two deep partial-thickness burn wounds (10 mm in diameter) were created in each rat by pressing a 100 ℃ electric iron plate on symmetric dorsal side. According to the random number table, the injured rats were divided into VEGF+ ESCs group, ESCs alone group, and blank control group, with 12 rats and 24 wounds in each group. From 0 (immediately) to 2 day (s) after injury, 20 μL phosphate buffer solution (PBS) was injected into each wound in the three groups in one time, once a day, with the solution in VEGF+ ESCs group containing 0.8×10 6 cells/mL of ESCs treated by 10 ng/mL VEGF for 10 days, the solution in ESCs alone group containing 0.8×10 6 cells/mL of ESCs without any treatment, and the solution in blank control group being PBS only. On post first injection day (PFID) 0 (immediately), 3, 7, and 14, three rats from each group were taken respectively according to the random number table for wound healing assessment, and the wound healing rates on PFID 3, 7, and 14 were calculated. The mice at each time point were sacrificed with wound tissue harvested for histology, and the skin structure was observed by hematoxylin-eosin staining. Data were statistically analyzed with independent sample t test, analysis of variance for factorial design, least significant difference test, and Bonferroni correction. Results:(1) By day 3 in culture, cells distributed in slowly-growing clusters. By day 5, the clusters were large and round, in which the cells mainly with large and round nuclei and little cytoplasm were observed. The above results were consistent with the morphological characteristics of ESCs. (2) The positive expression rate of CD44 was (94.3±1.2) %, and the expressions of CD45, CD11b, and CD11c were negative. The cells were confirmed as ESCs. (3) Compared with those of blank control group, the protein expression of CK19 in the cells of VEGF group was significantly increased after 10 days in culture ( t=3.756, P<0.05), while the protein expression of CK10 was significantly decreased ( t=3.149, P<0.05). Compared with those of blank control group, the Nanog mRNA expression in the cells cultured for 0 and 2 day (s) and absorbance values of the cells cultured for 2 and 4 day (s) were not significantly changed in VEGF group ( t=0.58, 0.77, 0.53, 3.02, P>0.05), while the Nanog mRNA expression in the cells cultured for 4, 6, 8, and 10 days and absorbance values of the cells cultured for 6, 8, and 10 days were significantly increased in VEGF group ( t=6.34, 5.00, 5.58, 4.61, 5.65, 10.78, 15.51, P<0.01). After 10 days in culture, the cell colony-forming rate in VEGF group was (56.4±1.3) %, significantly higher than (31.5±1.3) % of blank control group ( t=13.96, P<0.01). (4) The burn wounds of rats in the three groups were confined to the superficial dermis of the skin on PFID 0. On PFID 3, normal skin tissue at wound margins slightly contracted in the rats of VEGF+ ESCs group, which was earlier than that in the other two groups. On PFID 7, the newly generated epidermis covered most parts of the rat wounds in VEGF+ ESCs group, and some of the epithelium crawled around the rat wounds in ESCs alone group, but no obvious epithelialization was observed in the rat wounds in blank control group. On PFID 14, the rat wounds in VEGF+ ESCs group were basically healed, while some parts of the rat wounds were unhealed in ESCs alone group, and most parts of the rat wounds were unhealed in blank control group. On PFID 3, the wound healing rates of rats in the three groups were similar ( P>0.05). On PFID 7 and 14, the wound healing rates of rats in ESCs alone group, respectively (26.0±2.0) % and (64.4±4.7) %, were obviously higher than (12.4±1.1) % and (29.1±3.3) % of blank control group ( P<0.01), all of which were obviously lower than (41.0±2.4) % and (91.3±3.5) % of VEGF+ ESCs group ( P<0.01). On PFID 3, infiltration of a large number of inflammatory cells were observed in the rat wounds in VEGF+ ESCs group, which was earlier than those in the other two groups. On PFID 7, a large number of endothelial cells were observed in the rat wounds in VEGF+ ESCs group, while proliferation of a few endothelial cells were observed in the rat wounds in ESCs alone group, and a large number of inflammatory cells infiltrated the rat wounds in blank control group. On PFID 14, the newly generated epidermal cells covered nearly all the rat wounds in VEGF+ ESCs group and most parts of the rat wounds in ESCs alone group, while a large number of endothelial cells were observed and the newly generated epidermal cells covered some parts of the rat wounds in blank control group. Conclusions:ESCs of rats treated with exogenous VEGF can promote the healing of deep partial-thickness burn wounds in rats, which may be related to VEGF′s roles in promoting the proliferation of ESCs and reducing its differentiation level, so as to maintain the potency of stem cells.
5.Efficacy of"ditching and ridge removal"with 450 nm semiconductor blue laser in the treatment of large volume benign prostatic hyperplasia
Fanzhuo TU ; Xianyan CHEN ; Yaping QU ; Song LI ; Yan HU ; Chao MAN ; Changguan GE ; Yongwei ZHAO
Journal of Modern Urology 2024;29(5):435-439
Objective To explore the efficacy and safety of"ditching and ridge removal"with 450 nm semiconductor blue laser in the treatment of large volume benign prostatic hyperplasia(BPH),in order to promote the clinical application of this method.Methods A retrospective study was conducted on 30 patients with large volume BPH treated with"ditching and ridge removal"with 450 nm semiconductor blue laser in Yingsheng Branch of Tai'an Central Hospital during Sep.and Dec.2023.The laser operation time,level of hemoglobin before and after operation,bladder irrigation time after operation,urinary catheter indwelling time,postoperative hospital stay,and intraoperative and postoperative complications were recorded.The changes of international prostate symptom score(IPSS),quality of life scale(QoL)score,maximum urinary flow rate(Qmax)and post-void residual volume(PVR)were compared before and 1 month after operation.Results The volume of prostate was(104.5±14.52)mL,the laser operation time was(20.13±2.98)min,and the bladder irrigation time was(20.27±2.56)h.The catheter was removed in all patients 2 days after operation,and all patients were discharged 3 days after operation.One month after operation,the IPSS,QoL,Qmax and PVR were significantly improved as compared with those before operation(P<0.05).No complications occurred during the follow-up.Conclusion"Ditching and ridge removal"with 450 nm semiconductor blue laser is a new,safe and effective method in the treatment of large volume BPH.
6.Phorbol myristate acetate suppresses breast cancer cell growth via down-regulation of P-Rex1 expression.
Chuu-Yun A WONG ; Haihong JIANG ; Peter W ABEL ; Margaret A SCOFIELD ; Yan XIE ; Taotao WEI ; Yaping TU
Protein & Cell 2016;7(6):445-449
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Down-Regulation
;
drug effects
;
Female
;
Guanine Nucleotide Exchange Factors
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Humans
;
Indoles
;
pharmacology
;
MCF-7 Cells
;
Maleimides
;
pharmacology
;
Protein Isoforms
;
genetics
;
metabolism
;
Protein Kinase C
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Small Interfering
;
metabolism
;
Receptor, ErbB-2
;
genetics
;
metabolism
;
Tetradecanoylphorbol Acetate
;
toxicity