1.Concept, design and clinical application of minimally invasive liver transplantation through laparoscopic combined upper midline incision
Shuhong YI ; Hui TANG ; Kaining ZENG ; Xiao FENG ; Binsheng FU ; Qing YANG ; Jia YAO ; Yang YANG ; Guihua CHEN
Organ Transplantation 2025;16(1):67-73
Objective To explore the technical process and clinical application of laparoscopic combined upper midline incision minimally invasive liver transplantation. Methods A retrospective analysis was conducted on 30 cases of laparoscopic combined upper midline incision minimally invasive liver transplantation. The cases were divided into cirrhosis group (15 cases) and liver failure group (15 cases) based on the primary disease. The surgical and postoperative conditions of the two groups were compared. Results All patients successfully underwent laparoscopic "clockwise" liver resection, with no cases of passive conversion to open surgery or intolerance to pneumoperitoneum. In 6 cases, the right lobe was relatively large, and the right hepatic ligaments could not be completely mobilized. One case required an additional reverse "L" incision during open surgery. All patients successfully completed the liver transplantation, with no major intraoperative bleeding, cardiovascular events, or other occurrences in the 30 patients. The model for end-stage liver disease (MELD) score in the cirrhosis group was lower than that in the liver failure group (P<0.001). There were no statistically significant differences between the two groups in terms of age, surgical time, blood loss, anhepatic phase, or cold ischemia time (all P>0.05). During the perioperative period, there was 1 case of hepatic artery embolism, 1 case of portal vein anastomotic stenosis, no complications of hepatic vein and inferior vena cava, and 3 cases of biliary anastomotic stenosis, all of which occurred in the liver failure group. Conclusions In strictly selected cases, the minimally invasive liver transplantation technique combining laparoscopic hepatectomy with upper midline incision for graft implantation has the advantages of smaller incisions, less bleeding, relatively easier operation, and faster postoperative recovery, which is worthy of clinical promotion and application.
2.Interpretation of 2024 ESC guidelines for the management of elevated blood pressure and hypertension
Yu CHENG ; Yiheng ZHOU ; Yao LÜ ; ; Dongze LI ; Lidi LIU ; Peng ZHANG ; Rong YANG ; Yu JIA ; Rui ZENG ; Zhi WAN ; Xiaoyang LIAO
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):31-40
The European Society of Cardiology (ESC) released the "2024 ESC guidelines for the management of elevated blood pressure and hypertension" on August 30, 2024. This guideline updates the 2018 "Guidelines for the management of arterial hypertension." One notable update is the introduction of the concept of "elevated blood pressure" (120-139/70-89 mm Hg). Additionally, a new systolic blood pressure target range of 120-129 mm Hg has been proposed for most patients receiving antihypertensive treatment. The guideline also includes numerous additions or revisions in areas such as non-pharmacological interventions and device-based treatments for hypertension. This article interprets the guideline's recommendations on definition and classification of elevated blood pressure and hypertension, and cardiovascular disease risk assessment, diagnosing hypertension and investigating underlying causes, preventing and treating elevated blood pressure and hypertension. We provide a comparison interpretation with the 2018 "Guidelines for the management of arterial hypertension" and the "2017 ACC/AHA guideline on the prevention, detection, evaluation, and management of high blood pressure in adults."
3.Herbal Textual Research on Zanthoxylum armatum and Zanthoxyli Radix in Famous Classical Formulas
Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Yapeng WANG ; Erwei HAO ; Chun YAO ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):252-262
This article systematically analyzes the historical evolution of the name, origin, medicinal parts, harvesting and processing, and other aspects of Manjiao and Zanthoxyli Radix by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the relevant modern research materials, in order to provide a basis for the development of famous classical formulas containing the two medicinal materials. According to the herbal textual research, Manjiao was first recorded in Shennong Bencaojing of the Han dynasty with aliases such as Zhujiao, Goujiao and Zhijiao. Throughout history, Manjiao was sourced from the stems and roots of Zanthoxylum armatum in the Rutaceae family, and its leaves and fruits can also be used in medicine. The traditional recorded production area was mainly in Yunzhong(now Tuoketuo region in Inner Mongolia), with mentions in Zhejiang, Hunan, Fujian, Guangdong, Guangxi, Yunnan, Taiwan, and other provinces. Presently, this species is distributed from the south of Shandong, to Hainan, Taiwan, Tibet and other regions. The roots can be harvested year-round, while the fruits are harvested in autumn after maturity. In ancient times, the roots and stems were mostly used for brewing or soaking in wine, whereas nowadays, the roots are often sliced and then used as a raw material in traditional Chinese medicine, and the fruits should be stir-fried before use. Manjiao has a bitter taste and warm property, and was historically used to treat wind-cold dampness, joint pain, limb numbness, and knee pain. Modern researches have summarized its effects as dispelling wind, dispersing cold, promoting circulation, and relieving pain, and it is used for treating rheumatoid arthritis, toothache, bruises, as well as an anthelmintic. Zanthoxyli Radix initially known as Rudi Jinniugen, recorded in Bencao Qiuyuan of the Qing dynasty, with the alternate name of Liangbianzhen. In recent times, it is more commonly referred to as Liangmianzhen, sourced from the dried roots of Z. nitidum of the Rutaceae family, mainly produced in Guangxi and Guangdong. It can be harvested throughout the year, cleaned, sliced, and dried after harvesting. Zanthoxyli Radix is pungent, bitter, warm and slightly toxic, with the functions of promoting blood circulation, removing stasis, relieving pain, dispelling wind, and resolving swelling. Based on the results of herbal textual research, it is clarified that the ancient Manjiao and the modern Zanthoxyli Radix are not the same species. This article corrects the mistaken belief of by previous scholars that Zanthoxyli Radix is the same as ancient Manjiao, and suggests that formulas described as Manjiao should use Z. armatum as the medicinal herb, while those described as Liangmianzhen or Rudi Jinniu should use Z. nitidum. The processing was performed according to the processing requirements prescribed in the formulas, otherwise, the raw products are recommended for use.
4.Herbal Textual Research on Zanthoxylum armatum and Zanthoxyli Radix in Famous Classical Formulas
Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Yapeng WANG ; Erwei HAO ; Chun YAO ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):252-262
This article systematically analyzes the historical evolution of the name, origin, medicinal parts, harvesting and processing, and other aspects of Manjiao and Zanthoxyli Radix by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the relevant modern research materials, in order to provide a basis for the development of famous classical formulas containing the two medicinal materials. According to the herbal textual research, Manjiao was first recorded in Shennong Bencaojing of the Han dynasty with aliases such as Zhujiao, Goujiao and Zhijiao. Throughout history, Manjiao was sourced from the stems and roots of Zanthoxylum armatum in the Rutaceae family, and its leaves and fruits can also be used in medicine. The traditional recorded production area was mainly in Yunzhong(now Tuoketuo region in Inner Mongolia), with mentions in Zhejiang, Hunan, Fujian, Guangdong, Guangxi, Yunnan, Taiwan, and other provinces. Presently, this species is distributed from the south of Shandong, to Hainan, Taiwan, Tibet and other regions. The roots can be harvested year-round, while the fruits are harvested in autumn after maturity. In ancient times, the roots and stems were mostly used for brewing or soaking in wine, whereas nowadays, the roots are often sliced and then used as a raw material in traditional Chinese medicine, and the fruits should be stir-fried before use. Manjiao has a bitter taste and warm property, and was historically used to treat wind-cold dampness, joint pain, limb numbness, and knee pain. Modern researches have summarized its effects as dispelling wind, dispersing cold, promoting circulation, and relieving pain, and it is used for treating rheumatoid arthritis, toothache, bruises, as well as an anthelmintic. Zanthoxyli Radix initially known as Rudi Jinniugen, recorded in Bencao Qiuyuan of the Qing dynasty, with the alternate name of Liangbianzhen. In recent times, it is more commonly referred to as Liangmianzhen, sourced from the dried roots of Z. nitidum of the Rutaceae family, mainly produced in Guangxi and Guangdong. It can be harvested throughout the year, cleaned, sliced, and dried after harvesting. Zanthoxyli Radix is pungent, bitter, warm and slightly toxic, with the functions of promoting blood circulation, removing stasis, relieving pain, dispelling wind, and resolving swelling. Based on the results of herbal textual research, it is clarified that the ancient Manjiao and the modern Zanthoxyli Radix are not the same species. This article corrects the mistaken belief of by previous scholars that Zanthoxyli Radix is the same as ancient Manjiao, and suggests that formulas described as Manjiao should use Z. armatum as the medicinal herb, while those described as Liangmianzhen or Rudi Jinniu should use Z. nitidum. The processing was performed according to the processing requirements prescribed in the formulas, otherwise, the raw products are recommended for use.
5.Trends in Metabolically Unhealthy Obesity by Age, Sex, Race/Ethnicity, and Income among United States Adults, 1999 to 2018
Wen ZENG ; Weijiao ZHOU ; Junlan PU ; Juan LI ; Xiao HU ; Yuanrong YAO ; Shaomei SHANG
Diabetes & Metabolism Journal 2025;49(3):475-484
Background:
This study aimed to estimate temporal trends in metabolically unhealthy obesity (MUO) among United States (US) adults by age, sex, race/ethnicity, and income from 1999 to 2018.
Methods:
We included 17,230 non-pregnant adults from a nationally representative cross-sectional study, the National Health and Nutrition Examination Survey (NHANES). MUO was defined as body mass index ≥30 kg/m2 with any metabolic disorders in blood pressure, blood glucose, and blood lipids. The age-adjusted percentage of MUO was calculated, and linear regression models estimated trends in MUO.
Results:
The weighted mean age of adults was 47.28 years; 51.02% were male, 74.64% were non-Hispanic White. The age-adjusted percentage of MUO continuously increased in adults across all subgroups during 1999–2018, although with different magnitudes (all P<0.05 for linear trend). Adults aged 45 to 64 years consistently had higher percentages of MUO from 1999–2000 (34.25%; 95% confidence interval [CI], 25.85% to 42.66%) to 2017–2018 (42.03%; 95% CI, 35.09% to 48.97%) than the other two age subgroups (P<0.05 for group differences). The age-adjusted percentage of MUO was the highest among non-Hispanic Blacks while the lowest among non-Hispanic Whites in most cycles. Adults with high-income levels generally had lower MUO percentages from 1999–2000 (22.63%; 95% CI, 17.00% to 28.26%) to 2017–2018 (32.36%; 95% CI, 23.87% to 40.85%) compared with the other two subgroups.
Conclusion
This study detected a continuous linear increasing trend in MUO among US adults from 1999 to 2018. The persistence of disparities by age, race/ethnicity, and income is a cause for concern. This calls for implementing evidence-based, structural, and effective MUO prevention programs.
6.The mechanism and clinical application value of interleukin-10 family in anti-hepatic fibrosis
Qi LUO ; Biyu ZENG ; Rong ZHANG ; Liangjiang HUANG ; Lei FU ; Chun YAO
Journal of Clinical Hepatology 2025;41(4):748-754
The interleukin-10 (IL-10) family is expressed in various types of cells and has a wide range of biological functions, and it plays an important role in the development and progression of hepatic fibrosis. Hepatic fibrosis is a chronic liver disease characterized by abnormal repair of hepatic tissues after injury, activation of hepatic stellate cells, and excessive accumulation of extracellular matrix. The IL-10 family members include IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, IL-29, and IL-35, with similarities in structure and function, and changes in their expression levels are closely associated with the progression of hepatic fibrosis. Moderate upregulation of the expression of IL-10 family members can help maintain the quiescent state of hepatic stellate cells, promote the transformation of macrophages to anti-inflammatory phenotype, and regulate the activity of natural killer cells, thereby inhibiting inflammatory response, regulating cell apoptosis and autophagy, and finally reversing the progression of hepatic fibrosis. This article discusses the mechanism of action of IL-10 family members and their application in traditional Chinese medicine and Western medicine therapies, in order to provide new thoughts for the treatment of hepatic fibrosis.
7.Application of middle hepatic vein splitting and reconstruction technique in split liver transplantation from low-age donor livers
Hui TANG ; Binsheng FU ; Qing YANG ; Jia YAO ; Kaining ZENG ; Xiao FENG ; Shuhong YI ; Yang YANG
Organ Transplantation 2025;16(3):453-459
Objective To explore the feasibility and clinical experience of the middle hepatic vein splitting-reconstruction technique in split liver transplantation from low-age donor livers. Methods A retrospective analysis was conducted on the cases of two low-age donor livers that underwent middle hepatic vein splitting-reconstruction, which were transplanted into four child recipients at the Liver Transplantation Center of the Third Affiliated Hospital of Sun Yat-sen University from January 2017 to July 2023. The surgical and postoperative conditions were summarized and analyzed. Results Donor 1 was a 6-year-old and 4-month-old girl with a body weight of 21 kg, and the obtained donor liver weighed 496 g. After splitting, the left and right liver weights were 201 g and 280 g, and transplanted into a 9-month-old boy weighing 6.5 kg and a 9-month-old boy weighing 7.5 kg, respectively. The graft to recipient weight ratio (GRWR) was 3.09% and 3.73%, respectively. Donor 2 was a 5-year-old and 8-month-old boy with a body weight of 19 kg, and the donor liver weighed 673 g. After splitting, the left and right liver weights were 230 g and 400 g, and transplanted into a 13-month-old girl weighing 9.5 kg and a 15-month-old boy weighing 12 kg. The GRWR was 2.42% and 3.33%, respectively. Both donor livers were split ex vivo, with the middle hepatic vein being completely split in the middle and reconstructed using allogeneic iliac vein and iliac artery vascular patches. According to GRWR, none of the 4 transplant livers were reduced in volume. Among the 4 recipients, one died due to postoperative portal vein thrombosis and non-function of the transplant liver, while the other three cases recovered smoothly without early or late complications. Regular follow-up was conducted until July 31, 2023, and liver function recovered well. Conclusions Under the premise of detailed assessment of the donor liver and meticulous intraoperative operation, as well as matching with suitable child recipients, low-age donor livers may be selected for splitting. The complete splitting and reconstruction of the middle hepatic vein in the middle may effectively ensure the adequate venous return of the left and right liver and provide sufficient functional liver volume.
8.Trends in Metabolically Unhealthy Obesity by Age, Sex, Race/Ethnicity, and Income among United States Adults, 1999 to 2018
Wen ZENG ; Weijiao ZHOU ; Junlan PU ; Juan LI ; Xiao HU ; Yuanrong YAO ; Shaomei SHANG
Diabetes & Metabolism Journal 2025;49(3):475-484
Background:
This study aimed to estimate temporal trends in metabolically unhealthy obesity (MUO) among United States (US) adults by age, sex, race/ethnicity, and income from 1999 to 2018.
Methods:
We included 17,230 non-pregnant adults from a nationally representative cross-sectional study, the National Health and Nutrition Examination Survey (NHANES). MUO was defined as body mass index ≥30 kg/m2 with any metabolic disorders in blood pressure, blood glucose, and blood lipids. The age-adjusted percentage of MUO was calculated, and linear regression models estimated trends in MUO.
Results:
The weighted mean age of adults was 47.28 years; 51.02% were male, 74.64% were non-Hispanic White. The age-adjusted percentage of MUO continuously increased in adults across all subgroups during 1999–2018, although with different magnitudes (all P<0.05 for linear trend). Adults aged 45 to 64 years consistently had higher percentages of MUO from 1999–2000 (34.25%; 95% confidence interval [CI], 25.85% to 42.66%) to 2017–2018 (42.03%; 95% CI, 35.09% to 48.97%) than the other two age subgroups (P<0.05 for group differences). The age-adjusted percentage of MUO was the highest among non-Hispanic Blacks while the lowest among non-Hispanic Whites in most cycles. Adults with high-income levels generally had lower MUO percentages from 1999–2000 (22.63%; 95% CI, 17.00% to 28.26%) to 2017–2018 (32.36%; 95% CI, 23.87% to 40.85%) compared with the other two subgroups.
Conclusion
This study detected a continuous linear increasing trend in MUO among US adults from 1999 to 2018. The persistence of disparities by age, race/ethnicity, and income is a cause for concern. This calls for implementing evidence-based, structural, and effective MUO prevention programs.
9.Trends in Metabolically Unhealthy Obesity by Age, Sex, Race/Ethnicity, and Income among United States Adults, 1999 to 2018
Wen ZENG ; Weijiao ZHOU ; Junlan PU ; Juan LI ; Xiao HU ; Yuanrong YAO ; Shaomei SHANG
Diabetes & Metabolism Journal 2025;49(3):475-484
Background:
This study aimed to estimate temporal trends in metabolically unhealthy obesity (MUO) among United States (US) adults by age, sex, race/ethnicity, and income from 1999 to 2018.
Methods:
We included 17,230 non-pregnant adults from a nationally representative cross-sectional study, the National Health and Nutrition Examination Survey (NHANES). MUO was defined as body mass index ≥30 kg/m2 with any metabolic disorders in blood pressure, blood glucose, and blood lipids. The age-adjusted percentage of MUO was calculated, and linear regression models estimated trends in MUO.
Results:
The weighted mean age of adults was 47.28 years; 51.02% were male, 74.64% were non-Hispanic White. The age-adjusted percentage of MUO continuously increased in adults across all subgroups during 1999–2018, although with different magnitudes (all P<0.05 for linear trend). Adults aged 45 to 64 years consistently had higher percentages of MUO from 1999–2000 (34.25%; 95% confidence interval [CI], 25.85% to 42.66%) to 2017–2018 (42.03%; 95% CI, 35.09% to 48.97%) than the other two age subgroups (P<0.05 for group differences). The age-adjusted percentage of MUO was the highest among non-Hispanic Blacks while the lowest among non-Hispanic Whites in most cycles. Adults with high-income levels generally had lower MUO percentages from 1999–2000 (22.63%; 95% CI, 17.00% to 28.26%) to 2017–2018 (32.36%; 95% CI, 23.87% to 40.85%) compared with the other two subgroups.
Conclusion
This study detected a continuous linear increasing trend in MUO among US adults from 1999 to 2018. The persistence of disparities by age, race/ethnicity, and income is a cause for concern. This calls for implementing evidence-based, structural, and effective MUO prevention programs.
10.Trends in Metabolically Unhealthy Obesity by Age, Sex, Race/Ethnicity, and Income among United States Adults, 1999 to 2018
Wen ZENG ; Weijiao ZHOU ; Junlan PU ; Juan LI ; Xiao HU ; Yuanrong YAO ; Shaomei SHANG
Diabetes & Metabolism Journal 2025;49(3):475-484
Background:
This study aimed to estimate temporal trends in metabolically unhealthy obesity (MUO) among United States (US) adults by age, sex, race/ethnicity, and income from 1999 to 2018.
Methods:
We included 17,230 non-pregnant adults from a nationally representative cross-sectional study, the National Health and Nutrition Examination Survey (NHANES). MUO was defined as body mass index ≥30 kg/m2 with any metabolic disorders in blood pressure, blood glucose, and blood lipids. The age-adjusted percentage of MUO was calculated, and linear regression models estimated trends in MUO.
Results:
The weighted mean age of adults was 47.28 years; 51.02% were male, 74.64% were non-Hispanic White. The age-adjusted percentage of MUO continuously increased in adults across all subgroups during 1999–2018, although with different magnitudes (all P<0.05 for linear trend). Adults aged 45 to 64 years consistently had higher percentages of MUO from 1999–2000 (34.25%; 95% confidence interval [CI], 25.85% to 42.66%) to 2017–2018 (42.03%; 95% CI, 35.09% to 48.97%) than the other two age subgroups (P<0.05 for group differences). The age-adjusted percentage of MUO was the highest among non-Hispanic Blacks while the lowest among non-Hispanic Whites in most cycles. Adults with high-income levels generally had lower MUO percentages from 1999–2000 (22.63%; 95% CI, 17.00% to 28.26%) to 2017–2018 (32.36%; 95% CI, 23.87% to 40.85%) compared with the other two subgroups.
Conclusion
This study detected a continuous linear increasing trend in MUO among US adults from 1999 to 2018. The persistence of disparities by age, race/ethnicity, and income is a cause for concern. This calls for implementing evidence-based, structural, and effective MUO prevention programs.

Result Analysis
Print
Save
E-mail