1.A modified method for primary culture of human glomerular mesangial cells
Yanzhi YIN ; Limei ZHANG ; Jianwei JU ; Hongmei WANG ; Sha WANG
Chinese Journal of Tissue Engineering Research 2010;14(11):1939-1942
BACKGROUND:Primary culture of glomerular mesangial cells was less achievement ratio,short survival time,and less passage times.In particular,extraction of renal glomerulus remains difficult for culturing highly pure mesangial cell OBJECTIVE:To establish a more simple.high successful rate and good reproducibility method of human mesangial cells in primary cultureMETHODS:Kidneys jsolated from induction of labor with water bag voluntary were cut into pieces.and human mesangial cells were cultured with eugenic selection methods.Morphology was observed using inverted phase contrast microscope and transmission electron microscope,cell phenotype was detected using immunohistochemical method,and vimentin expression was observed using laser scanning confocal microscope.RESULTS AND CONCLUSION:The cultured mesangial cells were fusiform-shaped,irregular star-shaped,and slender.Organelle was rich in cytoplasm,cell process was clear,and microvillus was observed on the cell membrane.The cells expressed a-actin,myosin,vimentin,desmin but not expressed cytokeratin and Ⅷ factor.Laser scanning confocal microscope demonstrated that vimentin expression was positive and had the characteristics of fiber bundles.This suggested that the cultured intercapillary cells were coincidence with the characteristics of mesangial cell The renal corticaI tissue combined eugenic selection method was a simple and efficient method to culture human mesangial cells.
2.Preparation of Mycobacterium tuberculosis EsxV lipid nanoparticles subunit vaccine and its immunological characteristics.
Lu BAI ; Yanzhi LU ; Huanhuan NING ; Yali KANG ; Yanling XIE ; Jian KANG ; Xue LI ; Ruonan CUI ; Yin WEI ; Yueqin LIU ; Yinlan BAI
Chinese Journal of Biotechnology 2023;39(10):4085-4097
To prepare a lipid nanoparticle (LNP)-based subunit vaccine of Mycobacterium tuberculosis (Mtb) antigen EsxV and study its immunological characteristics, the LNP containing EsxV and c-di-AMP (EsxV: C: L) was prepared by thin film dispersion method, and its encapsulation rate, LNP morphology, particle size, surface charge and polyphase dispersion index were measured. BALB/c mice were immunized with EsxV: C: L by nasal drops. The levels of serum and mucosal antibodies, transcription and secretion of cytokines in lung and spleen, and the proportion of T cell subsets were detected after immunization. EsxV: C: L LNPs were obtained with uniform size and they were spherical and negatively charged. Compared with EsxV: C immunization, EsxV: C: L mucosal inoculation induced increased sIgA level in respiratory tract mucosa. Levels of IL-2 secreted from spleen and ratios of memory T cells and tissue-resident T cells in mice were also elevated. In conclusion, EsxV: C: L could induce stronger mucosal immunity and memory T cell immune responses, which may provide better protection against Mtb infection.
Animals
;
Mice
;
Mycobacterium tuberculosis
;
Antigens, Bacterial
;
Immunization
;
Nanoparticles
;
Vaccines, Subunit
;
Mice, Inbred BALB C
3.Human 8-cell embryos enable efficient induction of disease-preventive mutations without off-target effect by cytosine base editor.
Yinghui WEI ; Meiling ZHANG ; Jing HU ; Yingsi ZHOU ; Mingxing XUE ; Jianhang YIN ; Yuanhua LIU ; Hu FENG ; Ling ZHOU ; Zhifang LI ; Dongshuang WANG ; Zhiguo ZHANG ; Yin ZHOU ; Hongbin LIU ; Ning YAO ; Erwei ZUO ; Jiazhi HU ; Yanzhi DU ; Wen LI ; Chunlong XU ; Hui YANG
Protein & Cell 2023;14(6):416-432
Approximately 140 million people worldwide are homozygous carriers of APOE4 (ε4), a strong genetic risk factor for late onset familial and sporadic Alzheimer's disease (AD), 91% of whom will develop AD at earlier age than heterozygous carriers and noncarriers. Susceptibility to AD could be reduced by targeted editing of APOE4, but a technical basis for controlling the off-target effects of base editors is necessary to develop low-risk personalized gene therapies. Here, we first screened eight cytosine base editor variants at four injection stages (from 1- to 8-cell stage), and found that FNLS-YE1 variant in 8-cell embryos achieved the comparable base conversion rate (up to 100%) with the lowest bystander effects. In particular, 80% of AD-susceptible ε4 allele copies were converted to the AD-neutral ε3 allele in human ε4-carrying embryos. Stringent control measures combined with targeted deep sequencing, whole genome sequencing, and RNA sequencing showed no DNA or RNA off-target events in FNLS-YE1-treated human embryos or their derived stem cells. Furthermore, base editing with FNLS-YE1 showed no effects on embryo development to the blastocyst stage. Finally, we also demonstrated FNLS-YE1 could introduce known protective variants in human embryos to potentially reduce human susceptivity to systemic lupus erythematosus and familial hypercholesterolemia. Our study therefore suggests that base editing with FNLS-YE1 can efficiently and safely introduce known preventive variants in 8-cell human embryos, a potential approach for reducing human susceptibility to AD or other genetic diseases.
Humans
;
Apolipoprotein E4/genetics*
;
Cytosine
;
Mutation
;
Blastocyst
;
Heterozygote
;
Gene Editing
;
CRISPR-Cas Systems