1.Heparanase accelerates angiogenesis after cerebral ischemia
Yanyu XUE ; Jimei LI ; Jinmei SUN ; Yongbo ZHANG
International Journal of Cerebrovascular Diseases 2011;19(11):864-866
Heparanase (Hpa) is the only β-D-glucuronidase of degading heparan sulfate proteoglycans in the body of mammalian.Studies have confirmed that Hpa accelerates angiogenesis in multiple physiopathological processes; however there are still a few studies about the expression and role of Hpa after cerebral ischemia.This article mainly introduces the relation between Hpa and angiogenesis after cerebral ischemia.
2.Effect of gastrogin on AMPK/TRPA1 signaling pathway in rats with neuropathic pain
Xue SUN ; Shilei WANG ; Yanyu LU ; Yang ZHAO
Chinese Journal of Anesthesiology 2024;44(3):329-333
Objective:To evaluate the effect of gastrogin on AMP-activated protein kinase (AMPK)/transient receptor potential anchor protein 1 (TRPA1) signaling pathway in rats with neuropathic pain.Methods:Thirty-six SPF-grade healthy male Sprague-Dawley rats, aged 6-8 weeks, weighing 200-230 g, were divided into 3 groups ( n=12 each) using a random number table method: sham operation+ normal saline group (SHAM group), neuropathic pain+ normal saline group (NP group), and neuropathic pain+ gastrogin group (GAS group). Neuropathic pain was induced by chronic constrictive injury to sciatic nerve under 2% isoflurane anaesthesia. The sciatic nerve was only exposed but not ligated in SHAM group. Gastrogin 100 mg/kg was intraperitoneally injected for 14 consecutive days after developing the model in GAS group, while the equal volume of normal saline was given instead in SHAM and NP groups. The mechanical paw withdrawal threshold (MWT) and thermal paw withdrawal latency (TWL) were measured at 1 day before developing the model (T 0) and 1, 3, 5, 7, 10 and 14 days after developing the model (T 1-6). The rats were anesthetized and sacrificed following the measurement of pain thresholds at T 4 and T 6. The lumbar segment (L 4-6) of the spinal cord was removed for determination of TRPA1 mRNA expression (by quantitative real-time polymerase chain reaction), expression of TRPA1, AMPK and p-AMPK (by Western blot), expression of TRPA1 (by immunofluorescence staining) and expression of tumor necrosis-alpha(TNF-α), interleukin-1beta(IL-1β) and c-fos (by immunohistochemistry). Results:Compared with SHAM group, MWT and TWL were significantly decreased at T 1-6, the expression of TRPA1 mRNA, TRPA1, TNF-α, IL-1β and c-fos was up-regulated, the expression of p-AMPK was down-regulated ( P<0.05), and no significant change was found in AMPK expression in NP group ( P>0.05). Compared with NP group, MWT at T 3-6 and TWL at T 2-6 were significantly increased, the expression of TRPA1 mRNA, TRPA1, TNF-α, IL-1β and c-fos was down-regulated, and p-AMPK expression was up-regulated ( P<0.05), and no significant change was found in AMPK expression in GAS group ( P>0.05). Conclusions:The mechanism by which gastrogin reduces neuropathic pain may be related to modulating the expression of the AMPK/TRPA1 signaling pathway in rats.
3.Study on Metabolism of Miao Medicine Laportea bulbifera Extract in Isolated Human Intestinal Flora
Cun XUE ; Dan WU ; Zipeng GONG ; Siying CHEN ; Juan TANG ; Yueting LI ; Aimin WANG ; Yongjun LI ; Yanyu LAN ; Yonglin WANG
China Pharmacy 2020;31(14):1683-1690
OBJECTIVE:To explore the metabolic charact eristics of Miao medicine Laportea bulbifera extract in isolated human intestinal flora. METHODS :L. bulbifera was extracted with 70% ethanol reflux extraction. After concentration,extraction with n-butanol and drying ,L. bulbifera extract was obtained. Taking 0.05 g/mL L. bulbifera extract 1 mL mixed with isolated human intestinal flora fluid 10 mL and cultured for 36 h in anaerobic environment (setting up blank control without drugs or human intestinal bacterial solution ),so as to simulate the metabolic process of the extract in human intestine. The metabolites were detected by UPLC-Q-TOF/MS. The determination was performed on Agilent Eclipse Plus C 18 RRHD column with mobile phase consisted of 0.01% formic acid water solution- 0.01% formic acid acetonitrile solution (gradient eluetion )at the flow rate of 0.25 mL/min. The column temperature was set at 40 ℃,and the sample size was 1 µL. ESI detection was adopted and scanned by negative ion mode (ESI-);the capillary voltage was 4.5 kV,the ion source temperature was 120 ℃,the collision energy was 15-32 V,and the scanning range was m/z 50-1 000. The “Strip”module of MassLynx V 4.1 software was used to analyze the differential chromatograms between the reaction solution and the blank control of L. bulbifera extract. Mass spectrum data and UNIFI so ftware were used to predict relative molecular weight and formula ;based on the information of substance control and related literature reports , the structure and biotransformation pathway of L. bulbifera metabolites in isolated human intestinal flora were predicted and analyzed. RESULTS & CONCLUSIONS : A total of 3 prototype : products(rutin,quercetin,kaempferol-3-O-rutinoside)and 22metabolites (mainly the metabolites of quercetin ,mono- caffeoylquinic acid ,isoquercitrin,etc.) were detected after metabolized in isolated human intestinal flora. Itsbiotransformation pathway is phase Ⅰ reaction,which mainly consisted of reduction ,oxidation and hydrolysis.