1.Herbal Textual Research on Quisqualis Fructus in Famous Classical Formulas
Xiuping WEN ; Shiying CHEN ; Ying TAN ; Guanwen ZHENG ; Huilong XU ; Wen XU ; Chengzi YANG ; Zehao HUANG ; Yu LIN ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):225-237
This article systematically analyzed the historical evolution of the origin, scientific name, producing area, quality evaluation, harvesting and processing, and other aspects of Quisqualis Fructus by consulting the ancient materia medica, medical books, prescription books, local literature and combining with the modern literature and standards, summarized and explored the development rules of its medicinal properties and efficacy along with their underlying causes, in order to provide support for the development and utilization of famous classical formulas containing this herb. According to the textual research, Shijunzi was first recorded as Liuqiuzi in Nanfang Caomuzhuang of the Jin dynasty, and the name of Shijunzi was first used in Kaibao Bencao of the Song dynasty, which has been consistently used throughout subsequent dynasties, and there were also aliases such as Junziren, Sijunzi, and Dujilizi. The mainstream source of Quisqualis Fructus used in the past dynasties has been the dried mature fruits of Quisqualis indica, a plant belonging to the family Combretaceae. In modern times, its variety Q. indica var. villosa has also been recorded as the medicinal material of Quisqualis Fructus. In 2007, the Flora of China(English edition) designated Q. indica var. villosa as a synonym of Q. indica. Today, the accepted name of Shijunzi is updated to Combretum indicum. According to ancient herbal records, the producing areas of Quisqualis Fructus were Guangdong, Hong Kong, Macao, Guangxi, Hainan, Sichuan and Fujian, and then gradually expanded to Yunnan, Taiwan, Jiangxi and Guizhou. Since the Song dynasty, two major production regions have gradually emerged in Sichuan, Chongqing and Fujian. Currently, it is primarily cultivated in Chongqing, Guangxi and other areas, with Chongqing yielding the highest output. Since modern times, superior quality has been defined by large size, a purple-black surface, plump grains, and a yellowish-white kernel. According to ancient herbal records, the harvesting period of Quisqualis Fructus was the July and August of the lunar calendar, mostly used raw after shelling or with the shell intact, it underwent processing methods such as cleaning, slicing, mixing, steaming, roasting, stewing, and frying. Currently, the harvesting period is autumn, followed by sun-drying or low-heat drying, with processing methods including cleaning, stir-frying, and stewing. In ancient and modern literature, the records of the properties, functions and indications of Quisqualis Fructus are basically the same, that is, sweet in taste, warm in nature, predominantly non-toxic, belonging to the spleen and stomach meridians. It possesses effects of insecticide, decontamination and invigorating spleen for ascariasis, enterobiasis, abdominal pain due to worm accumulation and infantile malnutrition.The contraindications for use primarily include avoiding consumption by individuals without parasitic infestations, limiting use for those with spleen-stomach deficiency-cold, refraining from drinking hot tea during medication, and avoiding excessive intake. Based on the textual research, it is suggested that the dried mature fruits of Q. indica should be used as the medicinal material for the development of famous classical formulas containing Quisqualis Fructus. Processing methods may be chosen according to prescription requirements, and the raw products is recommended for medicinal use if not specified.
2.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
3.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
4.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
5.Dystrophinopathy in the paravertebral muscle of adolescent idiopathic scoliosis: a prospective case-control study in China
Junyu LI ; Danfeng ZHENG ; Zekun LI ; Jiaxi LI ; Zexi YANG ; Xiang ZHANG ; Yingshuang ZHANG ; Miao YU
Asian Spine Journal 2025;19(1):64-73
Methods:
This study enrolled 40 patients with AIS, 20 patients with congenital scoliosis (CS), and 20 patients with spinal degenerative disease (SDD). All patients underwent open posterior surgery in our hospital, and a paravertebral muscle (multifidus muscle) biopsy was performed intraoperatively. This study included many indexes that describe muscle, especially dystrophin staining. The above pathological results were compared among the AIS, CS, and SDD groups. The correlation between the Cobb angle and Nash–Moe classification and the above pathological results was analyzed in patients with AIS.
Results:
Significant reductions in the dystrophin staining of dystrophin-1 (p<0.001), dystrophin-2 (p<0.001), and dystrophin-3 (p<0.001) were observed in the AIS group than in the CS and SDD groups. The higher the Nash–Moe classification in the AIS group, the more significant the loss of dystrophin-2 (p=0.042) in the convex paraspinal muscles. Additionally, a significantly positive correlation was observed between the reductions of dystrophin-2 on the concave side of the AIS group and Cobb angle (p=0.011).
Conclusions
Dystrophin protein deficiency in the paraspinal muscles plays a crucial role in AIS formation and progression. The severity of scoliosis in patients with AIS is correlated with the extent of dystrophin loss in the paravertebral muscles. Therefore, dystrophin dysfunction may be relevant to AIS occurrence and development.
6.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.
7.Dystrophinopathy in the paravertebral muscle of adolescent idiopathic scoliosis: a prospective case-control study in China
Junyu LI ; Danfeng ZHENG ; Zekun LI ; Jiaxi LI ; Zexi YANG ; Xiang ZHANG ; Yingshuang ZHANG ; Miao YU
Asian Spine Journal 2025;19(1):64-73
Methods:
This study enrolled 40 patients with AIS, 20 patients with congenital scoliosis (CS), and 20 patients with spinal degenerative disease (SDD). All patients underwent open posterior surgery in our hospital, and a paravertebral muscle (multifidus muscle) biopsy was performed intraoperatively. This study included many indexes that describe muscle, especially dystrophin staining. The above pathological results were compared among the AIS, CS, and SDD groups. The correlation between the Cobb angle and Nash–Moe classification and the above pathological results was analyzed in patients with AIS.
Results:
Significant reductions in the dystrophin staining of dystrophin-1 (p<0.001), dystrophin-2 (p<0.001), and dystrophin-3 (p<0.001) were observed in the AIS group than in the CS and SDD groups. The higher the Nash–Moe classification in the AIS group, the more significant the loss of dystrophin-2 (p=0.042) in the convex paraspinal muscles. Additionally, a significantly positive correlation was observed between the reductions of dystrophin-2 on the concave side of the AIS group and Cobb angle (p=0.011).
Conclusions
Dystrophin protein deficiency in the paraspinal muscles plays a crucial role in AIS formation and progression. The severity of scoliosis in patients with AIS is correlated with the extent of dystrophin loss in the paravertebral muscles. Therefore, dystrophin dysfunction may be relevant to AIS occurrence and development.
8.Status Analysis of Acupoint Selection and Stimulation Parameters Application for Acupuncture Treatment of Functional Dyspepsia
Siyi ZHENG ; Han ZHANG ; Yang YU ; Chuanlong ZHOU ; Yan SHI ; Xiaohu YIN ; Shouhai HONG ; Na NIE ; Jianqiao FANG ; Yi LIANG
Journal of Traditional Chinese Medicine 2025;66(12):1293-1299
Based on commonly used acupoints in the clinical acupuncture treatment of functional dyspepsia (FD), this study systematically analyzes the therapeutic differences and synergistic effects between local and distal point selection. It also examines the suitability of primary acupoint selection for different FD subtypes, postprandial distress syndrome (PDS) and epigastric pain syndrome (EPS). The findings suggest that a combination of local and distal acupoints may be more appropriate as primary points for PDS, whereas local acupoints alone may be more suitable for EPS. Additionally, the study explores the impact of various factors, such as stimulation techniques, needling order, intensity or stimulation parameters, and depth, on the efficacy of acupuncture. It concludes that the intrinsic properties of acupoints are the primary determinants of therapeutic direction. Other factors mainly influence the magnitude rather than the direction of the effect. Future research may further investigate how different acupoint combinations, local versus distal, affect the treatment outcomes of FD subtypes, providing new insights for clinical acupuncture prescriptions.
9.Dystrophinopathy in the paravertebral muscle of adolescent idiopathic scoliosis: a prospective case-control study in China
Junyu LI ; Danfeng ZHENG ; Zekun LI ; Jiaxi LI ; Zexi YANG ; Xiang ZHANG ; Yingshuang ZHANG ; Miao YU
Asian Spine Journal 2025;19(1):64-73
Methods:
This study enrolled 40 patients with AIS, 20 patients with congenital scoliosis (CS), and 20 patients with spinal degenerative disease (SDD). All patients underwent open posterior surgery in our hospital, and a paravertebral muscle (multifidus muscle) biopsy was performed intraoperatively. This study included many indexes that describe muscle, especially dystrophin staining. The above pathological results were compared among the AIS, CS, and SDD groups. The correlation between the Cobb angle and Nash–Moe classification and the above pathological results was analyzed in patients with AIS.
Results:
Significant reductions in the dystrophin staining of dystrophin-1 (p<0.001), dystrophin-2 (p<0.001), and dystrophin-3 (p<0.001) were observed in the AIS group than in the CS and SDD groups. The higher the Nash–Moe classification in the AIS group, the more significant the loss of dystrophin-2 (p=0.042) in the convex paraspinal muscles. Additionally, a significantly positive correlation was observed between the reductions of dystrophin-2 on the concave side of the AIS group and Cobb angle (p=0.011).
Conclusions
Dystrophin protein deficiency in the paraspinal muscles plays a crucial role in AIS formation and progression. The severity of scoliosis in patients with AIS is correlated with the extent of dystrophin loss in the paravertebral muscles. Therefore, dystrophin dysfunction may be relevant to AIS occurrence and development.
10.Unraveling the Heterogeneity of CD8+ T-Cell Subsets in Liver Cirrhosis: Implications for Disease Progression
Kepu ZHENG ; Leiyang DAI ; Shengning ZHANG ; Yingpeng ZHAO ; Wang LI ; Yang GAO ; Yuanyi MANG ; Lingfeng JIAO ; Yu TANG ; Jianghua RAN
Gut and Liver 2025;19(3):410-426
Background/Aims:
Liver cirrhosis involves chronic inflammation and progressive fibrosis.Among various immune cells, CD8+ T cells are considered a major contributor to hepatic inflammation and fibrosis. However, the exact molecular pathways governing CD8+ T-cell-mediated effects in cirrhosis remain unclear.
Methods:
This study analyzed transcriptomic and single-cell sequencing data to elucidate CD8+ T-cell heterogeneity and implications in cirrhosis.
Results:
Weighted gene co-expression analysis of bulk RNA-seq data revealed an association between cirrhosis severity and activated T-cell markers like HLA and chemokine genes. Furthermore, single-cell profiling uncovered eight CD8+ T-cell subtypes, notably, effector memory (Tem) and exhausted (Tex) T cells. Tex cells, defined by PDCD1, LAG3, and CXCL13 expression, were increased in cirrhosis, while Tem cells were decreased. Lineage tracing and differential analysis highlighted CXCL13+ Tex cells as a terminal, exhausted subtype of cells with roles in PD-1 signaling, glycolysis, and T-cell regulation. CXCL13+ Tex cells displayed T-cell exhaustion markers like PDCD1, HAVCR2, TIGIT, and TNFRSF9. Functional analysis implicated potential roles of these cells in immunosuppression. Finally, a CXCL13+ Tex-cell gene signature was found that correlated with cirrhosis severity and poorer prognosis of liver cancer.
Conclusions
In summary, this comprehensive study defines specialized CD8+ T-cell subpopulations in cirrhosis, with CXCL13+ Tex cells displaying an exhausted phenotype associated with immune dysregulation and advanced disease. Key genes and pathways regulating these cells present potential therapeutic targets.

Result Analysis
Print
Save
E-mail