1.Rapid Discrimination of Processing Degree of Wine-processed Chuanxiong Rhizoma Based on Intelligent Sensory Technology and Multivariate Statistical Analysis
Xiaolong ZHANG ; Xiaoni MA ; Xinzhu WANG ; Po HU ; Yang PAN ; Tulin LU ; Guangming YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):174-182
ObjectiveTo explore the changes in color, odor and chemical components during wine-processing of Chuanxiong Rhizoma(CR), identify differential markers, and provide a basis for standardizing the process and establishing quality standards. MethodsFifteen batches of CR samples from 4 producing areas were collected. Colorimeter and electronic nose were used to detect the color changes and odor components of CR before and after wine-processing. Multivariate statistical methods including partial least squares-discriminant analysis(PLS-DA), principal component analysis(PCA), discriminant factor analysis(DFA) and Fisher discriminant analysis were applied to identify wine-processed CR at different processing stages and establish discriminant models, and differential components were screened out based on variable importance in the projection(VIP) value1. Then, high performance liquid chromatography(HPLC) was employed to detect the content changes of four components(ferulic acid, senkyunolide I, senkyunolide A and ligustilide) during the processing stages. ResultsThe differences of wine-processed CR at various stages were primarily reflected in color parameters L*(brightness value), a*(red-green value) and b*(yellow-blue value). Based on chromaticity differences, the color reference ranges were established for moderately processed CR, including L* of 46.75-48.24, a* of 5.37-6.07 and b* of 20.32-21.70. In odor analysis, DFA revealed significant differences among processing stages, and 11 odor markers were identified, with four differential markers(4-hydroxy-3-butylphthalide, isopropyl butyrate, L-limonene and 1-methoxyhexane) based on VIP values. HPLC results showed that there was no significant difference of the four components except for ligustilide in wine-processed CR at different stages. ConclusionThis study achieved rapid identification of wine-processed CR with different processing degrees by electronic sensory technology and differential component content detection, with discrimination accuracy rates of 92.4% and 93.272% for color and odor, respectively. This paper also established the reference ranges of main colorimetric parameters for wine-processed CR at different stages, and four differential components were screened out, providing a basis for standardizing the processing of wine-processed CR and establishing quality standards for this decoction pieces.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Rapid Discrimination of Processing Degree of Wine-processed Chuanxiong Rhizoma Based on Intelligent Sensory Technology and Multivariate Statistical Analysis
Xiaolong ZHANG ; Xiaoni MA ; Xinzhu WANG ; Po HU ; Yang PAN ; Tulin LU ; Guangming YANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):174-182
ObjectiveTo explore the changes in color, odor and chemical components during wine-processing of Chuanxiong Rhizoma(CR), identify differential markers, and provide a basis for standardizing the process and establishing quality standards. MethodsFifteen batches of CR samples from 4 producing areas were collected. Colorimeter and electronic nose were used to detect the color changes and odor components of CR before and after wine-processing. Multivariate statistical methods including partial least squares-discriminant analysis(PLS-DA), principal component analysis(PCA), discriminant factor analysis(DFA) and Fisher discriminant analysis were applied to identify wine-processed CR at different processing stages and establish discriminant models, and differential components were screened out based on variable importance in the projection(VIP) value1. Then, high performance liquid chromatography(HPLC) was employed to detect the content changes of four components(ferulic acid, senkyunolide I, senkyunolide A and ligustilide) during the processing stages. ResultsThe differences of wine-processed CR at various stages were primarily reflected in color parameters L*(brightness value), a*(red-green value) and b*(yellow-blue value). Based on chromaticity differences, the color reference ranges were established for moderately processed CR, including L* of 46.75-48.24, a* of 5.37-6.07 and b* of 20.32-21.70. In odor analysis, DFA revealed significant differences among processing stages, and 11 odor markers were identified, with four differential markers(4-hydroxy-3-butylphthalide, isopropyl butyrate, L-limonene and 1-methoxyhexane) based on VIP values. HPLC results showed that there was no significant difference of the four components except for ligustilide in wine-processed CR at different stages. ConclusionThis study achieved rapid identification of wine-processed CR with different processing degrees by electronic sensory technology and differential component content detection, with discrimination accuracy rates of 92.4% and 93.272% for color and odor, respectively. This paper also established the reference ranges of main colorimetric parameters for wine-processed CR at different stages, and four differential components were screened out, providing a basis for standardizing the processing of wine-processed CR and establishing quality standards for this decoction pieces.
4.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
5.Construction and efficacy verification of an intelligent pharmaceutical Q&A platform based on AI hallucination-suppression
Zhengwang WEN ; Jiaying WANG ; Wenyue YANG ; Haoyu YANG ; Xiao MA ; Yun LIU
China Pharmacy 2026;37(2):226-231
OBJECTIVE To construct an intelligent pharmaceutical Q&A platform for precision medication with low “artificial intelligence (AI) hallucination”, aiming to enhance the accuracy, consistency, and traceability of medication consultations. METHODS Medication package inserts were batch-processed and converted into structured data through Python programming to build a local pharmaceutical knowledge base. The retrieval and question-answering processes were designed based on large language models, and system integration and localized deployment were completed on Dify platform. By designing typical clinical medication questions and comparing the output of the intelligent pharmaceutical Q&A platform with the online version of DeepSeek across dimensions such as peak time retrieval, half-life, and dosage adjustment reasoning for patients with renal impairment, the accuracy and reliability of its retrieval and reasoning results were evaluated. RESULTS The intelligent pharmaceutical Q&A platform, constructed based on local drug package inserts, achieved 100% accuracy in retrieval and reasoning for peak time, half-life, and dosage adjustment schemes. In comparison, the online version of DeepSeek demonstrated accuracies of 30%(6/20), 50%(10/20), and 38%(23/60) across these three dimensions, respectively. CONCLUSIONS The constructed intelligent pharmaceutical Q&A platform is capable of accurately retrieving and extracting information from the local knowledge base based on clinical inquiries, thereby avoiding the occurrence of AI hallucinations and providing reliable medication decision support for healthcare professionals.
6.Analysis of related factors for the comorbidity of allergic rhinitis and obesity among primary and secondary school students in Inner Mongolia
Chinese Journal of School Health 2026;47(1):27-31
Objective:
To investigate the factors influencing the co-prevalence of allergic rhinitis and obesity among primary and secondary school students in Inner Mongolia, so as to provide a data foundation and theoretical basis for developing targeted intervention measures.
Methods:
In September and October 2024, a stratified cluster random sampling method was employed to select 139 102 students from 539 schools across 12 leagues/cities and 103 banners/counties in Inner Mongolia Autonomous Region. Participants who were diagnosed with allergic rhinitis by a doctor at least once within one year and had a body mass index ≥ 28 kg/m 2 were considered to have comorbid conditions.
Results:
The coprevalence rate of allergic rhinitis and obesity among primary and secondary school students in Inner Mongolia was 6.4% (8 931 cases). Lasso-Logistic regression revealed that nonboarding status, higher maternal education, consuming high protein foods ≥1 time daily, occasionally or never eating breakfast, engaging in moderate to vigorous physical activity for ≥60 minutes on fewer than half of holidays, and having been exposed to second hand smoke in person within the past seven days were associated with higher odds ratios for co-prevalence of allergic rhinitis and obesity( OR = 1.23 , 1.22-1.63, 1.20, 1.19, 1.38, 1.35); being female, higher grade level, residence in flag/county/district areas, non only child status, never having consumed a full glass of alcohol, non hypertensive status, and households without pets were associated with lower co-prevalence risks ( OR =0.65, 0.67-0.77, 0.81, 0.87, 0.73, 0.41, 0.68) (all P <0.05). The ROC curve indicated an area under the curve of 0.64 for the predictive model, demonstrating satisfactory discriminatory ability. The calibration curve showed consistency between predicted and actual occurrence probabilities.
Conclusions
The co-prevalence of allergic rhinitis and obesity among primary and secondary school students in Inner Mongolia is closely associated with demographic characteristics, dietary behaviours, and lifestyle habits. Future prevention and control strategies should prioritize these factors to implement targeted interventions.
7.Report of 4 cases of IgG4-related urinary diseases and literature review
Fanchao WEI ; Zhaoxiang WANG ; Mengwei XU ; Ruochen QI ; Guohui WANG ; Xiaoyan ZHANG ; Tong XU ; Jingliang ZHANG ; Shuaijun MA ; Weijun QIN ; Lijun YANG ; Shichao HAN
Journal of Modern Urology 2025;30(1):59-63
[Objective] To explore the clinical features of IgG4-related urinary diseases so as to provide reference for the diagnosis and treatment of such diseases. [Methods] The clinical data of 4 cases of IgG4-related urinary system diseases diagnosed and treated in Xijing Hospital of Air Force Medical University during Aug.2019 and Dec.2023 were retrospectively collected.Here, we report on the diagnosis and treatment of these patients, analysing their symptoms, serology, imaging and pathology as well as their treatment and outcomes. [Results] The patients included 2 male and 2 female.The lesions were involved with the retroperitoneum and urinary system.Three patients had symptoms of lumbar pain.The imaging manifestations were complex, including retroperitoneal mass involving urinary system organs in 2 cases, tabdense shadow of the right kidney in 1 case, and simple cystic mass of kidney in 1 case.Serum IgG4 value was not detected before surgery.All patients underwent radical surgical treatment.Postoperative pathology showed fibrous tissue hyperplasia with a large number of plasma cells, lymphocytes, a few neutrophil infiltrates, and lymphoid follicles and obliterated vasculitis in some specimens.The number of IgG4+ plasma cells was more than 10 in all tissues under high power microscope.After surgery, 3 patients had symptoms improved, and serum IgG4 value was within the normal range; 1 patient (patem 3) had elevated IgG4 value during follow-up, received subsequent hormone therapy, and the serum IgG 4 level remained stable. [Conclusion] The symptoms of IgG4-related diseases involving the urinary system are non-specific, and the imaging findings are various, easily confused with other diseases.Early detection of serum IgG4 and biopsy pathology can help clinicians make correct diagnosis in the early stage.
8.Mechanism of Buyang Huanwutang in Inhibiting Ferroptosis and Enhancing Neurological Function Recovery After Spinal Cord Injury via GPX4-ACSL4 Axis
Luchun XU ; Guozheng JIANG ; Yukun MA ; Jiawei SONG ; Yushan GAO ; Guanlong WANG ; Jiaojiao FAN ; Yongdong YANG ; Xing YU ; Xiangsheng TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):20-30
ObjectiveTo explore the mechanism by which Buyang Huanwutang regulates the glutathione peroxidase 4 (GPX4)-acyl-CoA synthetase long-chain family member 4 (ACSL4) axis to inhibit ferroptosis and promote neurological functional recovery after spinal cord injury (SCI). MethodsNinety rats were randomly divided into five groups: sham operation group, model group, low-dose Buyang Huanwutang group (12.5 g·kg-1), high-dose Buyang Huanwutang group (25 g·kg-1), and Buyang Huanwutang + inhibitor group (25 g·kg-1 + 5 g·kg-1 RSL3). The SCI model was established by using the allen method. Tissue was collected on the 7th and 28th days after operation. Motor function was assessed by using the Basso-Beattie-Bresnahan (BBB) scale. Hematoxylin-eosin (HE), Nissl, and Luxol fast blue (LFB) staining were performed to observe spinal cord histopathology. Transmission electron microscopy was used to examine mitochondrial ultrastructure. Immunofluorescence staining was used to detect the number of NeuN-positive cells and the fluorescence intensity of myelin basic protein (MBP), GPX4, and ACSL4. Real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) was used to analyze the mRNA expression of GPX4 and ACSL4. Enzyme linked immunosorbent assay (ELISA) was performed to measure the levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD). Colorimetric assays were used to determine the iron content in spinal cord tissue. ResultsCompared to the sham operation group, the model group exhibited significantly reduced BBB scores (P<0.01), severe pathological damage in spinal cord tissue, and marked mitochondrial ultrastructural disruption. In addition, the model group showed a decrease in the number of NeuN-positive cells (P<0.01), reduced fluorescence intensity of MBP and GPX4 (P<0.01), lower levels of GSH and SOD (P<0.01), and downregulated mRNA expression of GPX4 (P<0.01). Moreover, compared to the sham operation group, the model group had elevated levels of ROS, MDA, and tissue iron content (P<0.01), along with increased fluorescence intensity and mRNA expression of ACSL4 (P<0.01). Compared with the model group and Buyang Huanwutang + inhibitor group, the Buyang Huanwutang group showed significantly improved BBB scores (P<0.05, P<0.01) and exhibited less severe spinal cord tissue damage, reduced edema and inflammatory cell infiltration, increased neuronal survival, and more intact myelin structures. Additionally, mitochondrial ultrastructure was significantly improved in the Buyang Huanwutang group. Compared to the model group and Buyang Huanwutang + inhibitor group, the Buyang Huanwutang group significantly increased the number of NeuN-positive cells and the fluorescence intensity of MBP (P<0.05, P<0.01). Furthermore, Buyang Huanwutang significantly increased the fluorescence intensity and mRNA expression of GPX4 (P<0.01) and decreased the fluorescence intensity and mRNA expression of ACSL4 (P<0.01) compared to the model group and Buyang Huanwutang + inhibitor group. Finally, the Buyang Huanwutang group significantly decreased ROS, MDA, and tissue iron content (P<0.01) and significantly increased GSH and SOD levels (P<0.01) compared to the model group and Buyang Huanwutang + inhibitor group. ConclusionBuyang Huanwutang inhibits ferroptosis through the GPX4/ACSL4 axis, reduces secondary neuronal and myelin injury and oxidative stress, and ultimately promotes the recovery of neurological function.
9.Herbal Textual Research on Dioscoreae Hypoglaucae Rhizoma, Dioscoreae Spongiosae Rhizoma, Smilacis Chinae Rhizoma and Smilacis Glabrae Rhizoma in Famous Classical Formulas
Li LU ; Yichen YANG ; Erhuan WANG ; Hui CHANG ; Li AN ; Shibao WANG ; Cunde MA ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):218-247
This article systematically reviews and verifies the medicinal materials of Dioscoreae Hypoglaucae Rhizoma(DHR), Dioscoreae Spongiosae Rhizoma(DSR), Smilacis Chinae Rhizoma(SCR) and Smilacis Glabrae Rhizoma(SGR) from the aspects of name, origin, producing area, quality, harvesting, processing and efficacy by consulting historical literature, in order to provide reference for the development and utilization of famous classical formulas containing the four medicinal materials. DHR, DSR, SCR and SGR have a long history of application as medicinal materials. However, due to their similar growth environment and medicinal properties, as well as their functions of promoting dampness, dispelling wind and removing numbness, there have been instances of homonymous foreign objects and homonymous synonyms throughout history, resulting in confusion of the origin. Therefore, it is necessary to conduct comparative analysis and systematic research for clarifying the historical development and changes of the four, in order to provide a basis for safe and effective medication. According to research, Bixie was first recorded in Shennong Bencaojing and has been historically known as Baizhi, Chijie, Zhumu, and other aliases. From ancient times to the mid-20th century, there has always been a situation where the rhizomes of Dioscorea plants and Smilax plants, and even the rhizomes of Heterosmilax plants, were mixed together to be used as medicinal herbs for Bixie. However, since the Tang dynasty, it has been clearly advocated that the rhizomes of Dioscorea plants have excellent quality and have been the mainstream throughout history. The 2020 edition of Chinese Pharmacopoeia categorized it into two types of medicinal herbs(DHR and DSR). Among them, the origin of DHR is the dry rhizomes of Dioscorea hypoglauca, and the origins of DSR are the dry rhizomes of D. spongiosa and D. futschauensis. In ancient times, due to different types, the corresponding production areas of DHR and DSR were also different. Nowadays, They are mainly produced in the southern region of the Yangtze River. Since the Tang dynasty, the quality of Bixie has been characterized by its white color and soft nature. In modern times, it has been summarized that those with white color, large and thin pieces, powdery texture, tough and elastic texture, and neat and unbreakable are the best. The harvesting times of DHR and DSR are in spring or autumn, with the best quality harvested in autumn. The mainstream processing methods of them are slicing and then using the raw products or wine-processed products. SCR was first recorded in Mingyi Bielu and has been known as Jinganggen, Tielingjiao, Tieshuazi, and other aliases in history. The mainstream source is the dry rhizomes of Smilax china in the past dynasties, with the best quality being those that are tough and rich in powder. The harvesting time is from the late autumn to the following spring, and the main processing method throughout history has been slicing for raw use. SGR was first recorded under the item of Yuyuliang in Variorum of Shennong's Classic of Materia Medica. It was listed as an independent medicinal material from Bencao Gangmu. In history, there were such aliases as Cao Yuyuliang, Lengfantuan, Xianyiliang, Tubixie, etc. The main source of the past dynasties was dry rhizomes of S. glabra. In history, there have also been instances of multiple plants belonging to the same genus, and even cases of mixing the rhizomes of plants in the genus Heterosmilax. It is mainly produced in Guangdong, Hunan, Hubei, Zhejiang, Sichuan, Anhui and other regions, its quality has been summarized as large in size, powdery in texture, with few veins, and light brown in cross-section since modern times. The harvesting time is in spring or autumn, and the main processing method throughout history has been slicing for raw use. DHR, DSR, SCR and SGR all have the effects of promoting dampness, dispelling wind, relieving rheumatism and detoxifying. However, their detoxification abilities are ranked as follows:SGR>SCR>Bixie(DHR and DSR). Especially for the treatment of limb spasms, arthralgia and myalgia, scrofula, and scabies caused by syphilis and mercury poisoning, SGR has a unique effect. Based on the research results, DHR is recommended to develop the famous classical formulas containing Bixie as the first choice for medicinal herbs. It should be harvested in autumn, sliced thinly while fresh, and processed according to the requirements of the famous classical formulas, without any requirements for raw use. Selecting the rhizomes of S. china, harvested in late autumn, and thinly sliced while fresh. If there are no special processing requirements in the formulas, use it raw. Selecting the rhizomes of S. glabra, it is harvested in autumn and thinly sliced while fresh. If there are no special processing requirements in the formulas, raw products can be used.
10.GAO Shuzhong's Experience in Treating Idiopathic Tinnitus with Combination of Acupuncture and Chinese Materia Medica
Pengfei WANG ; Yiyang SUN ; Xiaoyan LI ; Wenli YAN ; Ningning MENG ; Guirong YANG ; Yuxia MA
Journal of Traditional Chinese Medicine 2025;66(3):233-237
To summarize Professor GAO Shuzhong's clinical experience in treating idiopathic tinnitus with a combination of acupuncture and Chinese meteria medica. It is believed that idiopathic tinnitus is mostly caused by weak lungs and spleen, kidney essence deficiency, liver constraint transforming into fire, and binding constraint of heart qi. Treatment advocates the combination of acupuncture and Chinese meteria medica in clinical practice. Acupuncture treatment mainly focus on the method of opening the orifices by syndrome identification in combination with Ermen (TE 21), Tinggong (SI 19), Tinghui (GB 2), Shenmai (BL 62) to regulate qi and blood, and supporting with Baihui (GV 20), Yintang (EX-HN 3), Taichong (LR 3), and Yanglingquan (GB 34) to soothe the liver, resolve constraint, and calm the mind. Oral administration of Chinese medicinal prescription usually includes modified Yiqi Congming Decoction (益气聪明汤) and Tongqi Powder (通气散), and the external administration of Chinese medicinal prescription can apply self-prescribed Wenqing Powder (温清散) to navel moxibustion.


Result Analysis
Print
Save
E-mail