1.Effect and mechanism of transplantation of human umbilical cord mesenchymal stem cells with overexpression of the Numb gene in treatment of cholestatic liver fibrosis
Shihao ZHANG ; Changqing ZHAO ; Mingyan YANG ; Feifei XING ; Wei LIU ; Gaofeng CHEN ; Jiamei CHEN ; Ping LIU ; Yongping MU
Journal of Clinical Hepatology 2026;42(1):80-89
ObjectiveTo investigate the effect and mechanism of transplantation of human umbilical cord mesenchymal stem cell (hUC-MSC) with overexpression of the Numb gene in the treatment of cholestatic liver fibrosis (CLF). MethodsThe technique of lentiviral transfection was used to induce the overexpression of the Numb gene in hUC-MSC (hUC-MSCNumb-OE), and hUC-MSC transfected with empty vector (hUC-MSCOE-EV) was used as negative control. Bile duct ligation (BDL) was performed to establish a rat model of CLF, and then the rats were randomly divided into BDL group, hUC-MSC group, hUC-MSCOE-EV group, and hUC-MSCNumb-OE group, while a sham-operation group was also established. The rats in the intervention groups were given a single splenic injection of the corresponding cells after BDL, and samples were collected at the end of week 4. Related indicators were measured, including serum biochemistry, liver histopathology, the content of hydroxyproline (Hyp) in the liver, hepatic stellate cell activation, ductular reaction, liver regeneration, and the expression levels of key molecules in the Numb-p53 signaling axis. A one-way analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between two groups. ResultsCompared with the BDL group, the hUC-MSC group and the hUC-MSCOE-EV group had significant reductions in the levels of serum biochemical parameters (aspartate aminotransferase, gamma-glutamyl transpeptidase, total bile acid, total bilirubin, and direct bilirubin), liver fibrosis markers (the content of Hyp and the expression levels of alpha-smooth muscle actin, tumor necrosis factor-α, and transforming growth factor-beta 1), and ductular reaction markers (the expression levels of CK7 and CK19) (all P <0.05), and compared with the hUC-MSCOE-EV group, the hUC-MSCNumb-OE group had significantly greater improvements in the above indicators (all P <0.05). In addition, compared with the hUC-MSCOE-EV group, the hUC-MSCNumb-OE group had significant improvements in the expression levels of liver regeneration-related markers (albumin and hepatocyte nuclear factor 4α) and the molecules associated with the Numb-p53 signaling axis (Numb, pNumb, Mdm2, and p53) (all P <0.05). ConclusionOverexpression of the Numb gene can enhance the therapeutic effect of hUC-MSC on CLF, possibly by activating the Numb-PTBL-p53-HNF4α axis, promoting the hepatic differentiation of hUC-MSCs and subsequently enhancing liver regeneration.
2.Protective effects of exosomes derived from MSCs in radiation-induced lung injury
Lili WANG ; Zien YANG ; Mingyue OUYANG ; Sining XING ; Song ZHAO ; Huiying YU
Chinese Journal of Radiological Health 2025;34(1):13-20
Objective To investigate the role and related mechanisms of exosomes derived from mesenchymal stem cells (MSCs) in radiation-induced lung injury (RILI). Methods Human umbilical cord-derived MSCs were isolated and cultured for the extraction and identification of exosomes. Eighteen male SD rats were randomly divided into Control group, RILI group and RILI + exosomes group (EXO group), with 6 rats in each group. Except for Control group, the other groups received a single X-ray dose of 30 Gy to the right lung. Immediately after irradiation, the EXO group was administered 2 × 109 exosomes/kg via tail vein injection. Control group and RILI group were given the same volume of normal saline. Eight weeks post-irradiation, the rats were sacrificed, lung tissue and peripheral venous blood were collected. HE and Masson staining were employed to observe the pathological and fibrotic changes of lung tissue. The levels of serum inflammatory factors IL-6, IFN-γ, TNF-α, and IL-10 were detected by ELISA. RT-qPCR was used to assess the mRNA levels of IL-1β, IL-6, Cdh1, and Col1a1 in lung tissue. The expression levels of Vimentin and TGF-β1 in lung tissue were measured by immunohistochemical staining. The expression levels of AMPK, p-AMPK, and TGF-β1 in lung tissue were detected by Western blot. Results MSC-derived exosomes were successfully extracted and identified. Compared with RILI group, EXO group showed significantly reduced pathological changes of lung inflammation and collagen deposition. The levels of serum inflammatory factors IL-6, INF-γ, and TNF-α were significantly decreased (P < 0.05), and the level of anti-inflammatory factor IL-10 was significantly increased (P < 0.05). The mRNA levels of IL-1β, IL-6, and Col1a1 in lung tissue were significantly decreased (P < 0.05 or P < 0.01), and the mRNA level of Cdh1 was significantly increased (P < 0.05 or P < 0.01). The levels of Vimentin and TGF-β1 in lung tissue were significantly reduced, while p-AMPK level was significantly up-regulated (P < 0.05). Conclusion Exosomes derived from MSCs may alleviate RILI by inhibiting inflammatory responses and regulating epithelial-mesenchymal transition mediated by AMPK/TGF-β1 signaling pathway.
3.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
4.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
5.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
6.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
7.Comparison of Logistic Regression and Machine Learning Approaches in Predicting Depressive Symptoms: A National-Based Study
Xing-Xuan DONG ; Jian-Hua LIU ; Tian-Yang ZHANG ; Chen-Wei PAN ; Chun-Hua ZHAO ; Yi-Bo WU ; Dan-Dan CHEN
Psychiatry Investigation 2025;22(3):267-278
Objective:
Machine learning (ML) has been reported to have better predictive capability than traditional statistical techniques. The aim of this study was to assess the efficacy of ML algorithms and logistic regression (LR) for predicting depressive symptoms during the COVID-19 pandemic.
Methods:
Analyses were carried out in a national cross-sectional study involving 21,916 participants. The ML algorithms in this study included random forest (RF), support vector machine (SVM), neural network (NN), and gradient boosting machine (GBM) methods. The performance indices were sensitivity, specificity, accuracy, precision, F1-score, and area under the receiver operating characteristic curve (AUC).
Results:
LR and NN had the best performance in terms of AUCs. The risk of overfitting was found to be negligible for most ML models except for RF, and GBM obtained the highest sensitivity, specificity, accuracy, precision, and F1-score. Therefore, LR, NN, and GBM models ranked among the best models.
Conclusion
Compared with ML models, LR model performed comparably to ML models in predicting depressive symptoms and identifying potential risk factors while also exhibiting a lower risk of overfitting.
8.Recommendations for Standardized Reporting of Systematic Reviews and Meta-Analysis of Animal Experiments
Qingyong ZHENG ; Donghua YANG ; Zhichao MA ; Ziyu ZHOU ; Yang LU ; Jingyu WANG ; Lina XING ; Yingying KANG ; Li DU ; Chunxiang ZHAO ; Baoshan DI ; Jinhui TIAN
Laboratory Animal and Comparative Medicine 2025;45(4):496-507
Animal experiments are an essential component of life sciences and medical research. However, the external validity and reliability of individual animal studies are frequently challenged by inherent limitations such as small sample sizes, high design heterogeneity, and poor reproducibility, which impede the effective translation of research findings into clinical practice. Systematic reviews and meta-analysis represent a key methodology for integrating existing evidence and enhancing the robustness of conclusions. Currently, however, the application of systematic reviews and meta-analysis in the field of animal experiments lacks standardized guidelines for their conduct and reporting, resulting in inconsistent quality and, to some extent, diminishing their evidence value. To address this issue, this paper aims to systematically delineate the reporting process for systematic reviews and meta-analysis of animal experiments and to propose a set of standardized recommendations that are both scientific and practical. The article's scope encompasses the entire process, from the preliminary preparatory phase [including formulating the population, intervention, comparison and outcome (PICO) question, assessing feasibility, and protocol pre-registration] to the key writing points for each section of the main report. In the core methods section, the paper elaborates on how to implement literature searches, establish eligibility criteria, perform data extraction, and assess the risk of bias, based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement, in conjunction with relevant guidelines and tools such as Animal Research: Reporting of in Vivo Experiments (ARRIVE) and a risk of bias assessment tool developed by the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE). For the presentation of results, strategies are proposed for clear and transparent display using flow diagrams and tables of characteristics. The discussion section places particular emphasis on how to scientifically interpret pooled effects, thoroughly analyze sources of heterogeneity, evaluate the impact of publication bias, and cautiously discuss the validity and limitations of extrapolating findings from animal studies to clinical settings. Furthermore, this paper recommends adopting the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology to comprehensively grade the quality of evidence. Through a modular analysis of the entire reporting process, this paper aims to provide researchers in the field with a clear and practical guide, thereby promoting the standardized development of systematic reviews and meta-analysis of animal experiments and enhancing their application value in scientific decision-making and translational medicine.
9.Dynamic gait parameters reveal long-term compensatory characteristics in knee joint function recovery following anterior cruciate ligament reconstruction: A retrospective cohort study.
Qitai LIN ; Zehao LI ; Meiming LI ; Yongsheng MA ; Wenming YANG ; Yugang XING ; Yang LIU ; Ruifeng LIANG ; Yixuan ZHANG ; Ruipeng ZHAO ; Wangping DUAN ; Pengcui LI ; Xiaochun WEI
Chinese Medical Journal 2025;138(22):3016-3018
10.Studies on the best production mode of traditional Chinese medicine driven by artificial intelligence and its engineering application.
Zheng LI ; Ning-Tao CHENG ; Xiao-Ping ZHAO ; Yi TAO ; Qi-Long XUE ; Xing-Chu GONG ; Yang YU ; Jie-Qiang ZHU ; Yi WANG
China Journal of Chinese Materia Medica 2025;50(12):3197-3203
The traditional Chinese medicine(TCM) industry is a crucial part of China's pharmaceutical sector and plays a strategic role in ensuring public health and promoting economic and social development. In response to the practical demand for high-quality development of the TCM industry, this paper focused on the bottlenecks encountered during the digital and intelligent transformation of TCM production systems. Specifically, it explored technical strategies and methodologies for constructing the best TCM production mode. An innovative artificial intelligence(AI)-centered technical architecture for TCM production was proposed, focusing on key aspects of production management including process modeling, state evaluation, and decision optimization. Furthermore, a series of critical technologies were developed to realize the best TCM production mode. Finally, a novel AI-driven TCM production mode characterized by a closed-loop system of "measurement-modeling-decision-execution" was presented through engineering case studies. This study is expected to provide a technological pathway for developing new quality productive forces within the TCM industry.
Artificial Intelligence
;
Drugs, Chinese Herbal
;
Medicine, Chinese Traditional/methods*
;
Humans

Result Analysis
Print
Save
E-mail