1.Progress of research in the improvement of the antithrombogenic property of biomedical polyurethane.
Liming LIAN ; Bing LENG ; Yanbao FU ; Xiaohua MA
Journal of Biomedical Engineering 2011;28(3):632-635
The progress of research of the physical and chemical modification methods to improve the antithrombogenic property of biomedical polyurethane (PU) in the past five years is reviewed in this paper. The physical modification method includes physical blending, physical vapor deposition (PVD) and replication molding technique. Meanwhile, chemical modification method is focused on the covalent bonding to immobilized special molecular. Moreover, the covalent bonding method covered functionalizing the PU surface with tailor-made groups in the bulk and the activation of the surface to form unstable active sites for further reactions.
Animals
;
Biocompatible Materials
;
chemistry
;
pharmacology
;
Chemical Phenomena
;
Fibrinolytic Agents
;
chemistry
;
pharmacology
;
Humans
;
Polyurethanes
;
chemistry
;
pharmacology
2.SUMOylation of RIG-I positively regulates the type I interferon signaling.
Zhiqiang MI ; Jihuan FU ; Yanbao XIONG ; Hong TANG
Protein & Cell 2010;1(3):275-283
Retinoic acid-inducible gene-I (RIG-I) functions as an intracellular pattern recognition receptor (PRR) that recognizes the 5'-triphosphate moiety of single-stranded RNA viruses to initiate the innate immune response. Previous studies have shown that Lys63-linked ubiquitylation is required for RIG-I activation and the downstream anti-viral type I interferon (IFN-I) induction. Herein we reported that, RIG-I was also modified by small ubiquitin-like modifier-1 (SUMO-1). Functional analysis showed that RIG-I SUMOylation enhanced IFN-I production through increased ubiquitylation and the interaction with its downstream adaptor molecule Cardif. Our results therefore suggested that SUMOylation might serve as an additional regulatory tier for RIG-I activation and IFN-I signaling.
Adaptor Proteins, Signal Transducing
;
physiology
;
Base Sequence
;
Binding Sites
;
DEAD Box Protein 58
;
DEAD-box RNA Helicases
;
chemistry
;
genetics
;
immunology
;
physiology
;
DNA Primers
;
genetics
;
Gene Knockdown Techniques
;
HEK293 Cells
;
HeLa Cells
;
Humans
;
Immunity, Innate
;
Interferon Type I
;
immunology
;
physiology
;
RNA Interference
;
SUMO-1 Protein
;
physiology
;
Sendai virus
;
immunology
;
Signal Transduction
;
Sumoylation
;
Ubiquitin-Conjugating Enzymes
;
antagonists & inhibitors
;
genetics
;
physiology