1.Phorbol myristate acetate suppresses breast cancer cell growth via down-regulation of P-Rex1 expression.
Chuu-Yun A WONG ; Haihong JIANG ; Peter W ABEL ; Margaret A SCOFIELD ; Yan XIE ; Taotao WEI ; Yaping TU
Protein & Cell 2016;7(6):445-449
Breast Neoplasms
;
metabolism
;
pathology
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Down-Regulation
;
drug effects
;
Female
;
Guanine Nucleotide Exchange Factors
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Humans
;
Indoles
;
pharmacology
;
MCF-7 Cells
;
Maleimides
;
pharmacology
;
Protein Isoforms
;
genetics
;
metabolism
;
Protein Kinase C
;
antagonists & inhibitors
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Small Interfering
;
metabolism
;
Receptor, ErbB-2
;
genetics
;
metabolism
;
Tetradecanoylphorbol Acetate
;
toxicity
2.Study on MSO/GO-based determination method for trace amount of aqueous Hg2+.
Tao SUN ; Jue HE ; Xu-wu XIANG ; Xiao-lan HONG ; Xiao-yan YAO ; Lin-zhi ZHANG ; Yi-yun WANG ; Yan-ne XIE ; Wen-he WU ; Jian-xin LU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2013;31(10):783-786
OBJECTIVETo establish a highly sensitive fluorometric nanobiosensor for determination of aqueous mercury ions (Hg(2+)) using optimized mercury-specific oligonucleotide (MSO) probes and graphene oxide (GO).
METHODSThe nanobiosensor was assembled by attaching the self-designed MSO(1) (5' end labeled with fluorophore carboxyfluorescein (FAM), denoted as FAM-MSO(1)) and MSO(2) to the surface of GO through strong non-covalent bonding forces. Upon the addition of Hg(2+), the formation of the T-Hg(2+)-T configuration desorbed the FAM-MSO(1) and MSO(2) from the surface of GO, resulting in a restoration of the fluorescence of FAM-MSO(1). Using the specific mispairing of T-Hg(2+)-T and the changes in fluorescent signals in solutions, quantitative analysis of Hg(2+) could be performed.
RESULTSThe average thickness of the prepared GO sheets was only 1.4 nm. For the Hg(2+) nanobiosensor, the optimum concentrations of FAM-MSO(1) and MSO(2) were both 1 µmol/L, the optimum volume of 0.5 g/L GO was 5 µL, and the limit of detection was 10 pmol/L; it had low cross-reactivity with 10 other kinds of non-specific metal ions; the fluorescence recovery efficiency was up to 65% in the re-determination of Hg(2+) after addition of Na(2)S(2)O(3).
CONCLUSIONThe MSO/GO-based nanobiosensor is convenient to operate, highly sensitive, highly specific, highly accurate, and reusable. It can be applied to determine trace amount of Hg(2+) in aqueous solutions.
Biosensing Techniques ; Fluorometry ; Graphite ; Mercury ; analysis ; Nanotechnology ; Oligonucleotide Probes ; Water