1.Advances in the role of protein post-translational modifications in circadian rhythm regulation.
Zi-Di ZHAO ; Qi-Miao HU ; Zi-Yi YANG ; Peng-Cheng SUN ; Bo-Wen JING ; Rong-Xi MAN ; Yuan XU ; Ru-Yu YAN ; Si-Yao QU ; Jian-Fei PEI
Acta Physiologica Sinica 2025;77(4):605-626
The circadian clock plays a critical role in regulating various physiological processes, including gene expression, metabolic regulation, immune response, and the sleep-wake cycle in living organisms. Post-translational modifications (PTMs) are crucial regulatory mechanisms to maintain the precise oscillation of the circadian clock. By modulating the stability, activity, cell localization and protein-protein interactions of core clock proteins, PTMs enable these proteins to respond dynamically to environmental and intracellular changes, thereby sustaining the periodic oscillations of the circadian clock. Different types of PTMs exert their effects through distincting molecular mechanisms, collectively ensuring the proper function of the circadian system. This review systematically summarized several major types of PTMs, including phosphorylation, acetylation, ubiquitination, SUMOylation and oxidative modification, and overviewed their roles in regulating the core clock proteins and the associated pathways, with the goals of providing a theoretical foundation for the deeper understanding of clock mechanisms and the treatment of diseases associated with circadian disruption.
Protein Processing, Post-Translational/physiology*
;
Circadian Rhythm/physiology*
;
Humans
;
Animals
;
CLOCK Proteins/physiology*
;
Circadian Clocks/physiology*
;
Phosphorylation
;
Acetylation
;
Ubiquitination
;
Sumoylation
2.Rapid characterization and identification of non-volatile components in Rhododendron tomentosum by UHPLC-Q-TOF-MS method.
Su-Ping XIAO ; Long-Mei LI ; Bin XIE ; Hong LIANG ; Qiong YIN ; Jian-Hui LI ; Jie DU ; Ji-Yong WANG ; Run-Huai ZHAO ; Yan-Qin XU ; Yun-Bo SUN ; Zong-Yuan LU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2025;50(11):3054-3069
This study aimed to characterize and identify the non-volatile components in aqueous and ethanolic extracts of the stems and leaves of Rhododendron tomentosum by using sensitive and efficient ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry(UHPLC-Q-TOF-MS) combined with a self-built information database. By comparing with reference compounds, analyzing fragment ion information, searching relevant literature, and using a self-built information database, 118 compounds were identified from the aqueous and ethanolic extracts of R. tomentosum, including 35 flavonoid glycosides, 15 phenolic glycosides, 12 flavonoids, 7 phenolic acids, 7 phenylethanol glycosides, 6 tannins, 6 phospholipids, 5 coumarins, 5 monoterpene glycosides, 6 triterpenes, 3 fatty acids, and 11 other types of compounds. Among them, 102 compounds were reported in R. tomentosum for the first time, and 36 compounds were identified by comparing them with reference compounds. The chemical components in the ethanolic and aqueous extracts of R. tomentosum leaves and stems showed slight differences, with 84 common chemical components accounting for 71.2% of the total 118 compounds. This study systematically characterized and identified the non-volatile chemical components in the ethanolic and aqueous extracts of R. tomentosum for the first time. The findings provide a reference for active ingredient research, quality control, and product development of R. tomentosum.
Rhododendron/chemistry*
;
Chromatography, High Pressure Liquid/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Mass Spectrometry/methods*
;
Plant Leaves/chemistry*
3.Imaging analysis of the posterior occipital muscles in cervical vertigo based on shear wave elastography.
Ying-Sen PAN ; Yi SHEN ; Fei-Peng QIN ; Hao-Yang ZHANG ; Nao LIU ; Yan-Jun XU ; Xiao-Ming YING
China Journal of Orthopaedics and Traumatology 2025;38(11):1126-1132
OBJECTIVE:
To evaluate the partial biomechanical properties of the posterior occipital muscles (rectus capitis posterior major, rectus capitis posterior minor, and obliquus capitis inferior) in patients with cervical vertigo.
METHODS:
A total of 30 patients with cervical vertigo admitted from April 2024 to September 2024 were included in the vertigo group, and 30 age-and gender-matched healthy subjects were recruited as the normal group. In the vertigo group, there were 21 females and 9 males, with an average age of (24.00±2.25) years;in the normal group, there were 22 females and 8 males, with an average age of (23.00±3.00) years. Shear wave elastography was used to measure the thickness and stiffness of the posterior occipital muscles in both groups.
RESULTS:
In the vertigo group, there were no statistically significant differences in the Young's modulus values (E) of stiffness of the posterior occipital muscles (rectus capitis posterior major, rectus capitis posterior minor, obliquus capitis inferior) between the left and right sides(P>0.05). The Young's modulus values(E) of stiffness of the right posterior occipital muscles (rectus capitis posterior major, rectus capitis posterior minor, obliquus capitis inferior) in the cervical vertigo group were (39.66±8.21) kPa, (45.61±5.85) kPa, and (43.73±5.22) kPa, respectively, which were significantly higher than those in the normal group 33.97(17.76) kPa, 41.38(8.99) kPa, 38.27(12.58) kPa, with statistically significant differences (P<0.05). In the vertigo group, the Young's modulus values(E) of stiffness of the left rectus capitis posterior major and left obliquus capitis inferior were (40.41±9.13) kPa and (42.11±6.20) kPa, respectively, which were significantly greater than those in the normal group (33.30±11.31) kPa, 38.94(14.62) kPa, with statistically significant differences(P<0.05);however, there was no statistically significant difference in the left rectus capitis posterior minor between the two groups(P>0.05). In the vertigo group, there were no statistically significant differences in the stiffness of the posterior occipital muscles (rectus capitis posterior major, rectus capitis posterior minor, obliquus capitis inferior) between the left and right sides(P>0.05). Additionally, there were no statistically significant differences in the thickness of the bilateral posterior occipital muscles between the vertigo group and the normal group (P>0.05).
CONCLUSION
The posterior occipital muscles of patients with cervical vertigo are stiffer than those of healthy individuals, while there is no significant difference in muscle thickness between the two groups.
Humans
;
Female
;
Male
;
Elasticity Imaging Techniques/methods*
;
Adult
;
Vertigo/physiopathology*
;
Neck Muscles/physiopathology*
;
Young Adult
4.Short-term Effects of Fine Particulate Matter and its Constituents on Acute Exacerbations of Chronic Bronchitis: A Time-stratified Case-crossover Study.
Jing Wei ZHANG ; Jian ZHANG ; Peng Fei LI ; Yan Dan XU ; Xue Song ZHOU ; Xiu Li TANG ; Jia QIU ; Zhong Ao DING ; Ming Jia XU ; Chong Jian WANG
Biomedical and Environmental Sciences 2025;38(3):389-393
5.NFKBIE: Novel Biomarkers for Diagnosis, Prognosis, and Immunity in Colorectal Cancer: Insights from Pan-cancer Analysis.
Chen Yang HOU ; Peng WANG ; Feng Xu YAN ; Yan Yan BO ; Zhen Peng ZHU ; Xi Ran WANG ; Shan LIU ; Dan Dan XU ; Jia Jia XIAO ; Jun XUE ; Fei GUO ; Qing Xue MENG ; Ren Sen RAN ; Wei Zheng LIANG
Biomedical and Environmental Sciences 2025;38(10):1320-1325
6.Research progress on carrier-free and carrier-supported supramolecular nanosystems of traditional Chinese medicine anti-tumor star molecules
Zi-ye ZANG ; Yao-zhi ZHANG ; Yi-hang ZHAO ; Xin-ru TAN ; Ji-chang WEI ; An-qi XU ; Hong-fei DUAN ; Hong-yan ZHANG ; Peng-long WANG ; Xue-mei HUANG ; Hai-min LEI
Acta Pharmaceutica Sinica 2024;59(4):908-917
Anti-tumor traditional Chinese medicine has a long history of clinic application, in which the star molecules have always been the hotspot of modern drug research, but they are limited by the solubility, stability, targeting, bioactivity or toxicity of the monomer components of traditional Chinese medicine anti-tumor star molecules and other pharmacokinetic problems, which hinders the traditional Chinese medicine anti-tumor star molecules for further clinical translation and application. Currently, the nanosystems prepared by supramolecular technologies such as molecular self-assembly and nanomaterial encapsulation have broader application prospects in improving the anti-tumor effect of active components of traditional Chinese medicine, which has attracted extensive attention from scholars at home and abroad. In this paper, we systematically review the research progress in preparation of supramolecular nano-systems from anti-tumor star molecule of traditional Chinese medicine, and summarize the two major categories and ten small classes of carrier-free and carrier-based supramolecular nanosystems and their research cases, and the future development direction is put forward. The purpose of this paper is to provide reference for the research and clinical transformation of using supramolecular technology to improve the clinical application of anti-tumor star molecule of traditional Chinese medicine.
7.A novel chalcone derivative C13 inhibits the growth of human gastric cancer cells through suppressing ErbB4/PI3K/AKT signaling pathway
Peng TAN ; Yun-feng ZHANG ; Long-yan WANG ; Hui-ming HUANG ; Fei WANG ; Xue-jiao WEI ; Zhu-guo WANG ; Jun LI ; Zhong-dong HU
Acta Pharmaceutica Sinica 2024;59(4):957-964
3ʹ-Hydroxy-4ʹ-methoxy-2-hydroxy-5-bromochalcone (hereinafter referred to as C13) is a novel chalcone derivative obtained in the process of structural modification of DHMMF, the antitumor active compound of
8.Rhamnose-analogues mediated liposomal drug delivery system for pancreatic cancer target therapy
Fei-yan GAO ; Xin-long LIU ; Shan PENG ; Yan ZHANG ; Chong LI
Acta Pharmaceutica Sinica 2024;59(4):1067-1078
In this study, we have firstly investigated the feasibility of rhamnolipids as targeting ligands to develop drug delivery systems for active targeting of pancreatic cancer. Rhamnolipid-modified liposomes (RhaL-Lip) were prepared by a thin film hydration method, and were evaluated preliminarily for RhaL-Lip physicochemical properties,
9.Comparison of clinical features and outcomes of proliferative, fibrotic, and mixed subtypes of IgG4-related disease: A retrospective cohort study
Linyi PENG ; Xinlu ZHANG ; Jiaxin ZHOU ; Jieqiong LI ; Zheng LIU ; Hui LU ; Yu PENG ; Yunyun FEI ; Yan ZHAO ; Xiaofeng ZENG ; Wen ZHANG
Chinese Medical Journal 2024;137(3):303-311
Background::Immunoglobulin G4-related disease (IgG4-RD) is a recently recognized immune-mediated disorder that can affect almost any organ in the human body. IgG4-RD can be categorized into proliferative and fibrotic subtypes based on patients’ clinicopathological characteristics. This study aimed to compare the clinical manifestations, laboratory findings, and treatment outcomes of IgG4-RD among different subtypes.Methods::We prospectively enrolled 622 patients with newly diagnosed IgG4-RD at Peking Union Medical College Hospital from March 2011 to August 2021. The patients were divided into three groups according to their clinicopathological characteristics: proliferative, fibrotic, and mixed subtypes. We compared demographic features, clinical manifestations, organ involvement, laboratory tests, and treatment agents across three subtypes. We then assessed the differences in treatment outcomes among 448 patients receiving glucocorticoids alone or in combination with immunosuppressants. Moreover, risk factors of relapse were revealed by applying the univariate and multivariate Cox regression analysis.Results::We classified the 622 patients into three groups consisting of 470 proliferative patients, 55 fibrotic patients, and 97 mixed patients, respectively. We found that gender distribution, age, disease duration, and frequency of allergy history were significantly different among subgroups. In terms of organ involvement, submandibular and lacrimal glands were frequently involved in the proliferative subtype, while retroperitoneum was the most commonly involved site in both fibrotic subtype and mixed subtype. The comparison of laboratory tests revealed that eosinophils ( P = 0.010), total IgE ( P = 0.006), high-sensitivity C-reactive protein ( P <0.001), erythrocyte sedimentation rate ( P <0.001), complement C4 ( P <0.001), IgG ( P = 0.001), IgG1 (P <0.001), IgG4 (P <0.001), and IgA ( P <0.001), at baseline were significantly different among three subtypes. Compared with proliferative and mixed subtypes, the fibrotic subtype showed the lowest rate of relapse (log-rank P = 0.014). Conclusions::Our study revealed the differences in demographic characteristics, clinical manifestations, organ involvement, laboratory tests, treatment agents, and outcomes across proliferative, fibrotic, and mixed subtypes in the retrospective cohort study. Given significant differences in relapse-free survival among the three subtypes, treatment regimens, and follow-up frequency should be considered separately according to different subtypes.Trial Registration::ClinicalTrials. gov, NCT01670695.
10.Nanomaterial-based Therapeutics for Biofilm-generated Bacterial Infections
Zhuo-Jun HE ; Yu-Ying CHEN ; Yang ZHOU ; Gui-Qin DAI ; De-Liang LIU ; Meng-De LIU ; Jian-Hui GAO ; Ze CHEN ; Jia-Yu DENG ; Guang-Yan LIANG ; Li WEI ; Peng-Fei ZHAO ; Hong-Zhou LU ; Ming-Bin ZHENG
Progress in Biochemistry and Biophysics 2024;51(7):1604-1617
Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.

Result Analysis
Print
Save
E-mail