1.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.
2.Impact of milk and egg supplementation on body composition and bone mineral density of rural primary school students in Yunnan Province
Chinese Journal of School Health 2025;46(10):1401-1405
Objective:
To investigate the impact of milk and egg supplementation on body composition and bone mineral density of rural primary school students in Yunnan Province, so as to provide a reference for developing targeted nutritional intervention strategies.
Methods:
In December 2023, a cluster sampling method was adopted to select students from grades one to three in four primary schools each from Jinggu and Shidian countys of Yunnan Province, as the intervention group (662 students). Additionally, two boarding primary schools were selected from each county based on the principle of matching scale and student numbers as the control group (455 students). Starting from April 2023, the intervention group received 200 mL milk and 50 g eggs during the break on school days for 8 months, while the control group maintained their usual diet behavior. Body composition was measured by using bioelectrical impedance analysis, and distal radial bone mineral density was assessed via dual energy X-ray absorptiometry in April and December 2023. The intervention effects were analyzed by using a difference in-differences approach.
Results:
The final measurements of body fat percentage, skeletal muscle mass and fat free mass of the intervention group and the control group of primary school students were significantly higher than the baseline values, and the net effect of milk and egg intervention on these body composition indicators was not statistically significant ( P >0.05, both before and after adjustment). In contrast, bone mineral density increased significantly by 0.02 g/cm 2 in the intervention group. The net intervention effect on bone mineral density was statistically significant ( β=0.02, 95%CI =0.00-0.04), and remained significant after model adjustment ( β=0.02, 95%CI =0.00-0.04) (both P < 0.05). Subgroup analysis showed statistically significant effects of the intervention among girls ( β=0.02, 95%CI =0.00-0.04), day students ( β=0.04, 95%CI =0.01-0.07), and students with normal nutritional status ( β=0.02, 95%CI =0.00-0.04) (all P <0.05). No significant effect of milk and egg supplementation was observed on body composition indicators (all P <0.05).
Conclusions
Milk and egg supplementation can improve bone mineral density among rural primary school students in Yunnan Province. It is recommended that rural school aged children should increase intake of milk and eggs to support growth and development.
3.Utility of the China-PAR Score in predicting secondary events among patients undergoing percutaneous coronary intervention.
Jianxin LI ; Xueyan ZHAO ; Jingjing XU ; Pei ZHU ; Ying SONG ; Yan CHEN ; Lin JIANG ; Lijian GAO ; Lei SONG ; Yuejin YANG ; Runlin GAO ; Xiangfeng LU ; Jinqing YUAN
Chinese Medical Journal 2025;138(5):598-600
4.Biosynthesis of ganoderic acid and its derivatives.
Hong-Yan SONG ; Wan YANG ; Li-Wei LIU ; Xia-Ying CHENG ; Dong-Feng YANG ; Zong-Qi YANG
China Journal of Chinese Materia Medica 2025;50(5):1155-1163
Ganoderic acid is a class of lanostane-type triterpenoids found in Ganoderma species, and is one of the most important pharmacologically active components in G. lucidum, exhibiting antioxidant, anti-neuropsychiatric, anti-tumor, and immune-enhancing properties. The content of ganoderic acid in G. lucidum is very low, and the traditional extraction process is complex, yielding minimal amounts at high cost. The biosynthetic pathway of G. lucidum triterpenoids(GLTs), including the synthesis of different structural forms of ganoderic acid from lanosterol, as well as the molecular regulatory mechanisms involving key regulatory enzyme genes and their functions, are not yet fully understood. With the continuous development of synthetic biology technologies, there has been a deeper understanding of the biosynthesis and metabolic regulation pathways of ganoderic acid and its derivatives at the molecular level. Research has explored the key regulatory enzyme genes related to ganoderic acid biosynthesis and their functions. Moreover, through the optimization of synthetic biology and culture conditions, large-scale production and preparation of GLTs at the cellular level have been achieved. This paper reviews and analyzes the latest research progress on the biosynthesis pathways and metabolic regulation of GLTs, focusing on the configuration of ganoderic acid and its derivatives, the biosynthetic pathways, key enzyme genes, transcription factors related to ganoderic acid biosynthesis, signal transduction mechanisms, and factors affecting triterpenoid biotransformation. This review is expected to provide a theoretical basis and technical reference for improving the efficient production of triterpenoid pharmacological components and the exploitation and utilization of G. lucidum resources.
Triterpenes/chemistry*
;
Reishi/chemistry*
;
Biosynthetic Pathways
;
Lanosterol
5.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
6.Antidepressant effects of Ziziphi Spinosae Semen extract on depressive-like behaviors in sleep deprivation rats based on integrated serum metabolomics and gut microbiota.
Liang-Lei SONG ; Ya-Yu SUN ; Ze-Jia NIU ; Jia-Ying LIU ; Xiang-Ping PEI ; Yan YAN ; Chen-Hui DU
China Journal of Chinese Materia Medica 2025;50(16):4510-4524
Based on serum metabolomics and gut microbiota technology, this study explores the effects and mechanisms of the water extract of Ziziphi Spinosae Semen(SZRW) and the petroleum ether extract of Ziziphi Spinosae Semen(SZRO) in improving depressive-like behaviors induced by sleep deprivation. A modified multi-platform water environment method was employed to establish a rat model of sleep deprivation. Depressive-like behaviors in rats were assessed through the sucrose preference test and forced swim test. The expression of barrier proteins, such as Occludin, in the colon was determined by immunofluorescence. UPLC-Q-Orbitrap MS was utilized to analyze the serum metabolic profiles of sleep-deprived rats, screen for differential metabolites, and analyze metabolic pathways. The diversity of the gut microbiota was detected using 16S rRNA gene sequencing. Spearman correlation coefficient analysis was conducted to assess the correlation between differential metabolites and gut microbiota. The results indicated that SZRO significantly increased the sucrose preference index and decreased the immobility time in the forced swim test in rats. A total of 34 differential metabolites were identified through serum metabolomics. SZRW and SZRO shared five metabolic pathways, including phenylalanine metabolism. SZRW uniquely featured taurine and hypotaurine metabolism, while SZRO uniquely featured linoleic acid metabolism and tyrosine metabolism. Correlation analysis revealed that SZRW could upregulate the abundance of Bilophila, promoting the production of indole-3-propionic acid and subsequently upregulating the expression levels of intestinal tight junction proteins such as ZO-1, Occludin, and Claudin-1. SZRO could indirectly influence metabolic pathways such as arginine metabolism and linoleic acid metabolism by upregulating the abundance of gut microbiota such as Coprococcus and Eubacterium species. Both SZRW and SZRO can regulate endogenous metabolism, including amino acids, energy, and lipids, alter the gut microbiota microecology, and improve depressive-like behaviors. SZRO demonstrated superior effects in regulating metabolic pathways and gut microbiota structure compared to SZRW. The findings of this study provide a scientific basis for elucidating the pharmacodynamic material basis of Ziziphi Spinosae Semen.
Animals
;
Rats
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Metabolomics
;
Drugs, Chinese Herbal/administration & dosage*
;
Depression/blood*
;
Rats, Sprague-Dawley
;
Sleep Deprivation/complications*
;
Ziziphus/chemistry*
;
Antidepressive Agents/administration & dosage*
;
Behavior, Animal/drug effects*
;
Humans
7.Clinical and Laboratory Characteristics of Streptococcus mitis Causing Bloodstream Infection in Children with Hematological Disease.
Yu-Long FAN ; Guo-Qing ZHU ; Zhi-Ying TIAN ; Yan-Xia LYU ; Zhao WANG ; Ye GUO ; Wen-Yu YANG ; Qing-Song LIN ; Xiao-Juan CHEN
Journal of Experimental Hematology 2025;33(1):286-291
OBJECTIVE:
To investigate the risk factors, clinical characteristics, and bacterial resistance of bloodstream infections caused by Streptococcus mitis in children with hematological disease, so as to provide a reference for infection control.
METHODS:
The clinical information and laboratory findings of pediatric patients complicated with blood cultures positive for Streptococcus mitis from January 2018 to December 2020 in the Institute of Hematology & Blood Diseases Hospital were searched and collected. The clinical characteristics, susceptibility factors, and antibiotic resistance of the children were retrospectively analyzed.
RESULTS:
Data analysis from 2018 to 2020 showed that the proportion of Streptococcus mitis isolated from bloodstream infections in children (≤14 years old) with hematological diseases was the highest (19.91%) and significantly higher than other bacteria, accounting for 38.64% of Gram-positive cocci, and presented as an increasing trend year by year. A total of 427 children tested positive blood cultures, including 85 children with bloodstream infections caused by Streptococcus mitis who tested after fever. Most children experienced a recurrent high fever in the early and middle stages (≤6 d) of neutropenia and persistent fever for more than 3 days. After adjusting the antibiotics according to the preliminary drug susceptibility results, the body temperature of most children (63.5%) returned to normal within 4 days. The 85 children were mainly diagnosed with acute myeloid leukemia (AML), accounting for 84.7%. The proportion of children in the neutropenia stage was 97.7%. The incidence of oral mucosal damage, lung infection, and gastrointestinal injury symptoms was 40%, 31.8%, and 27.1%, respectively. The ratio of elevated C-reactive protein (CRP) and procalcitonin was 65.9% and 9.4%, respectively. All isolated strains of Streptococcus mitis were not resistant to vancomycin and linezolid, and the resistance rate to penicillin, cefotaxime, levofloxacin, and quinupristin-dalfopristin was 10.6%, 8.2%, 9.4%, and 14.1%, respectively. None of children died due to bloodstream infection caused by Streptococcus mitis.
CONCLUSION
The infection rate of Streptococcus mitis is increasing year by year in children with hematological diseases, especially in children with AML. Among them, neutropenia and oral mucosal damage after chemotherapy are high-risk infection factors. The common clinical symptoms include persistent high fever, oral mucosal damage, and elevated CRP. Penicillin and cephalosporins have good sensitivity. Linezolid, as a highly sensitive antibiotic, can effectively control infection and shorten the course of disease.
Humans
;
Child
;
Streptococcal Infections/microbiology*
;
Retrospective Studies
;
Hematologic Diseases/complications*
;
Streptococcus mitis
;
Drug Resistance, Bacterial
;
Risk Factors
;
Microbial Sensitivity Tests
;
Anti-Bacterial Agents
;
Female
;
Male
;
Bacteremia/microbiology*
;
Child, Preschool
;
Adolescent
8.Effectiveness of Lianhua Qingwen Granule and Jingyin Gubiao Prescription in Omicron BA.2 Infection and Hospitalization: A Real-World Study of 56,244 Cases in Shanghai, China.
Yu-Jie ZHANG ; Guo-Jian LIU ; Han ZHANG ; Chen LIU ; Zhi-Qiang CHEN ; Ji-Shu XIAN ; Da-Li SONG ; Zhi LIU ; Xue YANG ; Ju WANG ; Zhe ZHANG ; Lu-Ying ZHANG ; Hua FENG ; Yan-Qi ZHANG ; Liang TAN
Chinese journal of integrative medicine 2025;31(1):11-18
OBJECTIVE:
To examine the effectiveness of Chinese medicine (CM) Lianhua Qingwen Granule (LHQW) and Jingyin Gubiao Prescription (JYGB) in asymptomatic or mild patients with Omicron infection in the shelter hospital.
METHODS:
This single-center retrospective cohort study was conducted in the largest shelter hospital in Shanghai, China, from April 10, 2022 to May 30, 2022. A total of 56,244 asymptomatic and mild Omicron cases were included and divided into 4 groups, i.e., non-administration group (23,702 cases), LHQW group (11,576 cases), JYGB group (12,112 cases), and dual combination of LHQW and JYGB group (8,854 cases). The length of stay (LOS) in the hospital was used to assess the effectiveness of LHQW and JYGB treatment on Omicron infection.
RESULTS:
Patients aged 41-60 years, with nadir threshold cycle (CT) value of N gene <25, or those fully vaccinated preferred to receive CM therapy. Before or after propensity score matching (PSM), the multiple linear regression showed that LHQW and JYGB treatment were independent influence factors of LOS (both P<0.001). After PSM, there were significant differences in LOS between the LHQW/JYGB combination and the other groups (P<0.01). The results of factorial design ANOVA proved that the LHQW/JYGB combination therapy synergistically shortened LOS (P=0.032).
CONCLUSIONS
Patients with a nadir CT value <25 were more likely to accept CM. The LHQW/JYGB combination therapy could shorten the LOS of Omicron-infected individuals in an isolated environment.
Humans
;
Drugs, Chinese Herbal/therapeutic use*
;
Male
;
Female
;
Middle Aged
;
Adult
;
China/epidemiology*
;
Hospitalization
;
COVID-19 Drug Treatment
;
COVID-19/epidemiology*
;
SARS-CoV-2
;
Retrospective Studies
;
Treatment Outcome
;
Length of Stay
;
Young Adult
;
Aged
9.Effects of Hot Night Exposure on Human Semen Quality: A Multicenter Population-Based Study.
Ting Ting DAI ; Ting XU ; Qi Ling WANG ; Hao Bo NI ; Chun Ying SONG ; Yu Shan LI ; Fu Ping LI ; Tian Qing MENG ; Hui Qiang SHENG ; Ling Xi WANG ; Xiao Yan CAI ; Li Na XIAO ; Xiao Lin YU ; Qing Hui ZENG ; Pi GUO ; Xin Zong ZHANG
Biomedical and Environmental Sciences 2025;38(2):178-193
OBJECTIVE:
To explore and quantify the association of hot night exposure during the sperm development period (0-90 lag days) with semen quality.
METHODS:
A total of 6,640 male sperm donors from 6 human sperm banks in China during 2014-2020 were recruited in this multicenter study. Two indices (i.e., hot night excess [HNE] and hot night duration [HND]) were used to estimate the heat intensity and duration during nighttime. Linear mixed models were used to examine the association between hot nights and semen quality parameters.
RESULTS:
The exposure-response relationship revealed that HNE and HND during 0-90 days before semen collection had a significantly inverse association with sperm motility. Specifically, a 1 °C increase in HNE was associated with decreased sperm progressive motility of 0.0090 (95% confidence interval [ CI]: -0.0147, -0.0033) and decreased total motility of 0.0094 (95% CI: -0.0160, -0.0029). HND was significantly associated with reduced sperm progressive motility and total motility of 0.0021 (95% CI: -0.0040, -0.0003) and 0.0023 (95% CI: -0.0043, -0.0002), respectively. Consistent results were observed at different temperature thresholds on hot nights.
CONCLUSION
Our findings highlight the need to mitigate nocturnal heat exposure during spermatogenesis to maintain optimal semen quality.
Humans
;
Male
;
Semen Analysis
;
Adult
;
Sperm Motility
;
Hot Temperature/adverse effects*
;
China
;
Middle Aged
;
Spermatozoa/physiology*
;
Young Adult
10.Susceptible Windows of Prenatal Ozone Exposure and Preterm Birth: A Hospital-Based Observational Study.
Rong Rong QU ; Dong Qin ZHANG ; Han Ying LI ; Jia Yin ZHI ; Yan Xi CHEN ; Ling CHAO ; Zhen Zhen LIANG ; Chen Guang ZHANG ; Wei Dong WU ; Jie SONG
Biomedical and Environmental Sciences 2025;38(2):255-260


Result Analysis
Print
Save
E-mail