1.Comparison of Histopathological and Molecular Pathological Phenotypes in Mouse Models of Intrauterine Adhesions Induced by Two Concentrations of Ethanol Perfusion
Juan JIANG ; Ning SONG ; Wenbo LIAN ; Congcong SHAO ; Wenwen GU ; Yan SHI
Laboratory Animal and Comparative Medicine 2025;45(4):393-402
Objective To construct intrauterine adhesion (IUA) mouse models induced by two different concentrations of ethanol injury, compare the phenotypes, and optimize a more stable IUA modeling method. Methods Twenty 8-week-old female C57BL/6N mice were randomly divided into two groups: the 95% ethanol injury group and the 50% ethanol injury group. Using a self-control method, the left uterine horn was infused with ethanol to establish the IUA model, while the right uterine horn was infused with saline as the sham operation. Five mice from each group were euthanized on day 7 and 15 after modeling, and uterine tissues were collected. Hematoxylin-eosin (HE) staining was used to observe the endometrial pathology, and Masson staining was used to assess the degree of endometrial fibrosis. Quantitative real-time PCR was employed to detect the expression levels of fibrosis markers and pro-inflammatory factors in the uterine tissues. Results Compared to the sham operation, these two ethanol injury led to a significant reduction in elasticity of the uterus, an increase in inflammatory infiltration, and a marked increase in the degree of fibrosis on day 7 after modeling (P<0.05). The 95% ethanol injury group showed a significant decrease in endometrial thickness (P<0.05), whereas no significant change was observed in the 50% ethanol injury group when compared to the sham operation (P>0.05). The expression levels of fibrotic marker molecules collagen type Ⅳ alpha 1 chain (Col4A1), α-smooth muscle actin (α-SMA), transforming growth factor-β (TGF-β), and pro-inflammatory factors tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were significantly elevated in the 50% ethanol injury group when compared to the sham operation (P<0.05), although there was an increasing trend of the same markers in the 95% ethanol injury group, the differences were not statistically significant (P>0.05). On day 15 after modeling, the histopathological changes in both ethanol injury groups were not significant when compared to the sham operation, the expression levels of Col4A1, TGF-β, TNF-α and IL-1β remained significantly higher in the 50% ethanol injury group (P<0.05), while only IL-1β was significantly elevated in the 95% ethanol injury group (P<0.05). Conclusion Uterine infusion with 95% ethanol results in more marked histopathological changes in the IUA mouse model compared to the 50% ethanol injury group. The 95% ethanol injury model is suitable for histopathological studies. However, the 50% ethanol injury group shows higher expression levels of fibrosis markers and pro-inflammatory factors compared to the 95% ethanol injury group, suggesting that the 50% ethanol injury model is more suitable for molecular pathological study.
2.A new triterpenoid from Elephantopus scaber.
Zu-Xiao DING ; Hong-Xi XIE ; Lin CHEN ; Jun-Jie HAO ; Yan-Qiu LUO ; Zhi-Yong JIANG ; Shi-Kui XU
China Journal of Chinese Materia Medica 2025;50(5):1224-1230
The chemical constituents of the petroleum ether extract derived from the 90% ethanol extract of Elephantopus scaber were investigated. By silica gel column chromatography, C_(18), MCI column chromatography and semi-preparative high performance liquid chromatography, ten compounds were isolated. Their structures were identified as 3β-hydroxy-6β,7β-epoxytaraxeran-14-ene(1), 3β-hydroxyolean-12-en-28-oic acid(2), D-friedoolean-14-ene-3β,7α-diol(3), 3β-hydroxy-11α-methoxyolean-12-ene(4), 3β-hydroxyolean-11,13(18)-diene(5), 11α-hydroxy-β-amyrin(6), betulinic acid(7), 3β-hydroxy-30-norlupan-20-one(8), 6-acetonylchelerythrine(9), and 4',5'-dehydrodiodictyonema A(10) by analysis of the 1D NMR, 2D NMR, MS, and IR spectral data. Among them, compound 1 was a new triterpene and other compounds except compounds 2 and 7 were isolated from this plant for the first time.
Triterpenes/isolation & purification*
;
Drugs, Chinese Herbal/isolation & purification*
;
Molecular Structure
;
Asteraceae/chemistry*
;
Chromatography, High Pressure Liquid
;
Magnetic Resonance Spectroscopy
3.Innovation and application of traditional Chinese medicine dispensing promoted through integration of whole-process data elements.
Huan-Fei YANG ; Si-Yu LI ; Chen-Qian YU ; Jian-Kun WU ; Fang LIU ; Li-Bin JIANG ; Chun-Jin LI ; Xiang-Fei SU ; Wei-Guo BAI ; Hua-Qiang ZHAI ; Shi-Yuan JIN ; Yong-Yan WANG
China Journal of Chinese Materia Medica 2025;50(11):3189-3196
As a new type of production factor that can empower the development of new quality productivity, the data element is an important engine to promote the high quality development of the industry. Traditional Chinese medicine(TCM) dispensing is the most basic work of TCM clinical pharmacy, and its quality directly affects the clinical efficacy of TCM. The integration of data elements and TCM dispensing can stimulate the innovation and vitality of the TCM dispensing industry and promote the high-quality and sustainable development of the industry. A large-scale, detailed, and systematic study on TCM dispensing was conducted. The innovative practice path of data fusion construction in the whole process of TCM dispensing was investigated by integrating the digital resources "nine full activities" of TCM dispensing, creating the digital dictionary of "TCM clinical information data elements", and exploring innovative applications of TCM dispensing driven by data and technology, so as to promote the standardized, digital, and intelligent development of TCM dispensing in medical health services. The research content of this project was successfully selected as the second batch of "Data element×" typical cases of National Data Administration in 2024, which is the only selected case in the field of TCM.
Medicine, Chinese Traditional/methods*
;
Drugs, Chinese Herbal
;
Humans
4.Preliminary study on preparation of decellularized nerve grafts from GGTA1 gene-edited pigs and their immune rejection in xenotransplantation.
Yuli LIU ; Jinjuan ZHAO ; Xiangyu SONG ; Zhibo JIA ; Chaochao LI ; Tieyuan ZHANG ; Xiangling LI ; Shi YAN ; Ruichao HE ; Jiang PENG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(2):224-229
OBJECTIVE:
To prepare decellularized nerve grafts from alpha-1, 3-galactosyltransferase (GGTA1) gene-edited pigs and explore their biocompatibility for xenotransplantation.
METHODS:
The sciatic nerves from wild-type pigs and GGTA1 gene-edited pigs were obtained and underwent decellularization. The alpha-galactosidase (α-gal) content in the sciatic nerves of GGTA1 gene-edited pigs was detected by using IB4 fluorescence staining and ELISA method to verify the knockout status of the GGTA1 gene, and using human sciatic nerve as a control. HE staining and scanning electron microscopy observation were used to observe the structure of the nerve samples. Immunofluorescence staining and DNA content determination were used to evaluate the degree of decellularization of the nerve samples. Fourteen nude mice were taken, and subcutaneous capsules were prepared on both sides of the spine. Decellularized nerve samples of wild-type pigs ( n=7) and GGTA1 gene-edited pigs ( n=7) were randomly implanted in the subcutaneous capsules. Blood was drawn at 1, 3, 5, and 7 days after implantation to detect neutrophil counting.
RESULTS:
IB4 fluorescence staining and ELISA detection showed that GGTA1 gene was successfully knocked out in the nerves of GGTA1 gene-edited pigs. HE staining showed that the structure of the decellularized nerve from GGTA1 gene-edited pigs was well preserved; the nerve basement membrane tube structure was visible under scanning electron microscopy; no cell nuclei was observed, and the extracellular matrix components was retained in the nerve grafts by immunofluorescence staining; and the DNA content was significantly reduced when compared with the normal nerves ( P<0.05). In vivo experiments showed that the number of neutrophils in the two groups were similar at 1, 3, and 7 days after implantation, with no significant difference ( P>0.05); only at 5 days, the number of neutrophils was significantly lower in the GGTA1 gene-edited pigs than in the wild-type pigs ( P<0.05).
CONCLUSION
The decellularized nerve grafts from GGTA1 gene-edited pigs have well-preserved nerve structure, complete decellularization, retain the natural nerve basement membrane tube structure and components, and low immune response after xenotransplantation through in vitro experiments.
Animals
;
Transplantation, Heterologous
;
Galactosyltransferases/genetics*
;
Sciatic Nerve/immunology*
;
Swine
;
Tissue Engineering/methods*
;
Humans
;
Graft Rejection/prevention & control*
;
Gene Editing
;
Mice
;
Mice, Nude
;
Heterografts/immunology*
;
Animals, Genetically Modified
;
Tissue Scaffolds
;
Decellularized Extracellular Matrix
5.Zedoarondiol Inhibits Neovascularization in Atherosclerotic Plaques of ApoE-/- Mice by Reducing Platelet Exosomes-Derived MiR-let-7a.
Bei-Li XIE ; Bo-Ce SONG ; Ming-Wang LIU ; Wei WEN ; Yu-Xin YAN ; Meng-Jie GAO ; Lu-Lian JIANG ; Zhi-Die JIN ; Lin YANG ; Jian-Gang LIU ; Da-Zhuo SHI ; Fu-Hai ZHAO
Chinese journal of integrative medicine 2025;31(3):228-239
OBJECTIVE:
To investigate the effect of zedoarondiol on neovascularization of atherosclerotic (AS) plaque by exosomes experiment.
METHODS:
ApoE-/- mice were fed with high-fat diet to establish AS model and treated with high- and low-dose (10, 5 mg/kg daily) of zedoarondiol, respectively. After 14 weeks, the expressions of anti-angiogenic protein thrombospondin 1 (THBS-1) and its receptor CD36 in plaques, as well as platelet activation rate and exosome-derived miR-let-7a were detected. Then, zedoarondiol was used to intervene in platelets in vitro, and miR-let-7a was detected in platelet-derived exosomes (Pexo). Finally, human umbilical vein endothelial cells (HUVECs) were transfected with miR-let-7a mimics and treated with Pexo to observe the effect of miR-let-7a in Pexo on tube formation.
RESULTS:
Animal experiments showed that after treating with zedoarondiol, the neovascularization density in plaques of AS mice was significantly reduced, THBS-1 and CD36 increased, the platelet activation rate was markedly reduced, and the miR-let-7a level in Pexo was reduced (P<0.01). In vitro experiments, the platelet activation rate and miR-let-7a levels in Pexo were significantly reduced after zedoarondiol's intervention. Cell experiments showed that after Pexo's intervention, the tube length increased, and the transfection of miR-let-7a minics further increased the tube length of cells, while reducing the expressions of THBS-1 and CD36.
CONCLUSION
Zedoarondiol has the effect of inhibiting neovascularization within plaque in AS mice, and its mechanism may be potentially related to inhibiting platelet activation and reducing the Pexo-derived miRNA-let-7a level.
Animals
;
MicroRNAs/genetics*
;
Exosomes/drug effects*
;
Plaque, Atherosclerotic/genetics*
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
Blood Platelets/drug effects*
;
Apolipoproteins E/deficiency*
;
Thrombospondin 1/metabolism*
;
CD36 Antigens/metabolism*
;
Platelet Activation/drug effects*
;
Male
;
Mice
;
Mice, Inbred C57BL
6.Expert consensus on the application of nasal cavity filling substances in nasal surgery patients(2025, Shanghai).
Keqing ZHAO ; Shaoqing YU ; Hongquan WEI ; Chenjie YU ; Guangke WANG ; Shijie QIU ; Yanjun WANG ; Hongtao ZHEN ; Yucheng YANG ; Yurong GU ; Tao GUO ; Feng LIU ; Meiping LU ; Bin SUN ; Yanli YANG ; Yuzhu WAN ; Cuida MENG ; Yanan SUN ; Yi ZHAO ; Qun LI ; An LI ; Luo BA ; Linli TIAN ; Guodong YU ; Xin FENG ; Wen LIU ; Yongtuan LI ; Jian WU ; De HUAI ; Dongsheng GU ; Hanqiang LU ; Xinyi SHI ; Huiping YE ; Yan JIANG ; Weitian ZHANG ; Yu XU ; Zhenxiao HUANG ; Huabin LI
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(4):285-291
This consensus will introduce the characteristics of fillers used in the surgical cavities of domestic nasal surgery patients based on relevant literature and expert opinions. It will also provide recommendations for the selection of cavity fillers for different nasal diseases, with chronic sinusitis as a representative example.
Humans
;
Nasal Cavity/surgery*
;
Nasal Surgical Procedures
;
China
;
Consensus
;
Sinusitis/surgery*
;
Dermal Fillers
7.Unlocking the role of wound microbiome in diabetic, burn, and germ-free wound repair treated by natural and synthetic scaffolds.
Zeyu XU ; Lixiang ZHANG ; Qinghan TANG ; Chenxi YANG ; Xiaotong DING ; Ziyu WANG ; Rizhong HUANG ; Ruihan JIANG ; Joannake MAITZ ; Huaikai SHI ; Xin YAN ; Mei DONG ; Jun CHEN ; Yiwei WANG
Acta Pharmaceutica Sinica B 2025;15(1):611-626
In current clinical practice, various dermal templates and skin substitutes are used to enhance wound healing. However, the role of wound commensal microbiome in regulating scaffold performance and the healing process remains unclear. In this study, we investigated the influence of both natural and synthetic scaffolds on the wound commensal microbiome and wound repair in three distinct models including diabetic wounds, burn injuries, and germ-free (GF) wounds. Remarkably, synthetic electrospun polycaprolactone (PCL) scaffolds were observed to positively promote microbiome diversity, leading to enhanced diabetic wound healing compared to the natural scaffolds Integra® (INT) and MatriDerm® (MAD). In contrast, both natural and synthetic scaffolds exhibited comparable effects on the diversity of the microbiome and the healing of burn injuries. In GF wounds with no detectable microorganisms, a reversed healing rate was noted showing natural scaffold (MAD) accelerated wound repair compared to the open or the synthetic scaffold (PCL) treatment. Furthermore, the response of the wound commensal microbiome to PCL scaffolds appears pivotal in promoting anti-inflammatory factors during diabetic wound healing. Our results emphasize that the wound commensal microbiome, mediated by different scaffolds plays an important role in the wound healing process.
8.Graph Neural Networks and Multimodal DTI Features for Schizophrenia Classification: Insights from Brain Network Analysis and Gene Expression.
Jingjing GAO ; Heping TANG ; Zhengning WANG ; Yanling LI ; Na LUO ; Ming SONG ; Sangma XIE ; Weiyang SHI ; Hao YAN ; Lin LU ; Jun YAN ; Peng LI ; Yuqing SONG ; Jun CHEN ; Yunchun CHEN ; Huaning WANG ; Wenming LIU ; Zhigang LI ; Hua GUO ; Ping WAN ; Luxian LV ; Yongfeng YANG ; Huiling WANG ; Hongxing ZHANG ; Huawang WU ; Yuping NING ; Dai ZHANG ; Tianzi JIANG
Neuroscience Bulletin 2025;41(6):933-950
Schizophrenia (SZ) stands as a severe psychiatric disorder. This study applied diffusion tensor imaging (DTI) data in conjunction with graph neural networks to distinguish SZ patients from normal controls (NCs) and showcases the superior performance of a graph neural network integrating combined fractional anisotropy and fiber number brain network features, achieving an accuracy of 73.79% in distinguishing SZ patients from NCs. Beyond mere discrimination, our study delved deeper into the advantages of utilizing white matter brain network features for identifying SZ patients through interpretable model analysis and gene expression analysis. These analyses uncovered intricate interrelationships between brain imaging markers and genetic biomarkers, providing novel insights into the neuropathological basis of SZ. In summary, our findings underscore the potential of graph neural networks applied to multimodal DTI data for enhancing SZ detection through an integrated analysis of neuroimaging and genetic features.
Humans
;
Schizophrenia/pathology*
;
Diffusion Tensor Imaging/methods*
;
Male
;
Female
;
Adult
;
Brain/metabolism*
;
Young Adult
;
Middle Aged
;
White Matter/pathology*
;
Gene Expression
;
Nerve Net/diagnostic imaging*
;
Graph Neural Networks
10.PDHX acetylation facilitates tumor progression by disrupting PDC assembly and activating lactylation-mediated gene expression.
Zetan JIANG ; Nanchi XIONG ; Ronghui YAN ; Shi-Ting LI ; Haiying LIU ; Qiankun MAO ; Yuchen SUN ; Shengqi SHEN ; Ling YE ; Ping GAO ; Pinggen ZHANG ; Weidong JIA ; Huafeng ZHANG
Protein & Cell 2025;16(1):49-63
Deactivation of the mitochondrial pyruvate dehydrogenase complex (PDC) is important for the metabolic switching of cancer cell from oxidative phosphorylation to aerobic glycolysis. Studies examining PDC activity regulation have mainly focused on the phosphorylation of pyruvate dehydrogenase (E1), leaving other post-translational modifications largely unexplored. Here, we demonstrate that the acetylation of Lys 488 of pyruvate dehydrogenase complex component X (PDHX) commonly occurs in hepatocellular carcinoma, disrupting PDC assembly and contributing to lactate-driven epigenetic control of gene expression. PDHX, an E3-binding protein in the PDC, is acetylated by the p300 at Lys 488, impeding the interaction between PDHX and dihydrolipoyl transacetylase (E2), thereby disrupting PDC assembly to inhibit its activation. PDC disruption results in the conversion of most glucose to lactate, contributing to the aerobic glycolysis and H3K56 lactylation-mediated gene expression, facilitating tumor progression. These findings highlight a previously unrecognized role of PDHX acetylation in regulating PDC assembly and activity, linking PDHX Lys 488 acetylation and histone lactylation during hepatocellular carcinoma progression and providing a potential biomarker and therapeutic target for further development.
Humans
;
Acetylation
;
Carcinoma, Hepatocellular/genetics*
;
Liver Neoplasms/genetics*
;
Pyruvate Dehydrogenase Complex/genetics*
;
Gene Expression Regulation, Neoplastic
;
Animals
;
Mice
;
Cell Line, Tumor
;
Protein Processing, Post-Translational
;
Histones/metabolism*
;
Disease Progression

Result Analysis
Print
Save
E-mail