1.Development of a Disperse Dye Immunoassay Technique for Detection of Antibodies against Neospora caninum in Cattle.
Fatemeh SELAHI ; Mehdi NAMAVARI ; Mohammad Hossein HOSSEINI ; Maryam MANSOURIAN ; Yahya TAHAMTAN
The Korean Journal of Parasitology 2013;51(1):129-132
In this study a disperse dye immunoassay method was standardized and evaluated for detection of antibodies against Neospora caninum in cattle. Sera from 150 cattle with a recent history of abortion were collected and tested by commercial ELISA kit and a standardized in-house dye immunoassay system. The positivity rate for the sera used in this study was 34.6% for the disperse dye immunoassay (DDIA) compared to 32% obtained by ELISA kit. This study showed no significant difference between DDIA and ELISA. The results indicated that the DDIA provide an economic, simple, rapid and robust test for detection of N. caninum infection in cattle.
Animals
;
Antibodies, Protozoan/*blood
;
Cattle
;
Cattle Diseases/*diagnosis/parasitology
;
Coccidiosis/diagnosis/parasitology/*veterinary
;
Diagnostic Tests, Routine/*methods
;
Female
;
Immunoassay/methods
;
Neospora/*immunology
;
Staining and Labeling/methods
;
Veterinary Medicine/*methods
2. Adjuvant activity of Pasteurella multocida A strain, Pasteurella multocida B strain and Salmonella typhimurium bacterial DNA on cellular and humoral immunity responses against Pasteurella multocida specific strain infections in Balb/c mice
Maryam HOMAYOON ; Yahya TAHAMTAN ; Seyed Mohammad HOSSEINI ; Mohammad KARGAR ; Abbas SEPAHY
Asian Pacific Journal of Tropical Medicine 2018;11(5):336-341
Objective: To evaluate the effects of Pasteurella multocida (P. multocida) vaccines on the expression and release of antibodies, interleukin (IL)-6 and IL-12 by serum. Methods: Balb/c mice were immunized with two formalin and iron inactivated vaccine doses within 2 weeks. The vaccines were adjuvant with P. multocida A strain, P. multocida B strain and Salmonella typhimurium bacterial DNA (AbDNA, BbDNA and SbDNA for short, respectively). The animals were challenged 4 weeks after immunization. Blood of mice was collected to detect the change of specific antibody, IL-6, and IL-12 using ELISA. Results: The specific antibody and interleukins in the immunized group increased significantly compared to the control mice after vaccination and challenge (P<0.05). The highest release of these cytokines was obtained by P. multocida inactivated with iron and adjuvant with AbDNA at a concentration of 25 μg/mL. The antibody titer peak was 0.447 in mice vaccinated with iron-killed whole-cell antigen adjunct with AbDNA. The time-courses of release showed that bacterial DNA was able to stimulate IL-6 and IL-12 production more than alum (P<0.05). Conclusions: Our findings introduce that bacterial DNA is capable of releasing an immunological response with several cytokines. These indicate that bacterial DNA entrapped with killed P. multocida antigen is a new and effective adjuvant to enhance specific immunity and resistance of animal against the infectious pathogen, which could simplify the development of highly promising strong adjuvant.