1.Evaluation of operation quality of measles surveillance system in Hebei Province in 2020 - 2023
Shiheng CUI ; Xiaomeng XU ; Li SUN ; Yafei WANG ; Wei WANG ; Yanli CONG ; Jinghui WANG
Journal of Public Health and Preventive Medicine 2025;36(2):26-29
Objective To analyze the operation of Measles Surveillance System (MSS) in Hebei Province, and to provide evidence for measles elimination. Methods Measles surveillance data was collected from the MSS from 2020 to 2023, and a modified weighted technology for order preference by similarity to an ideal solution (TOPSIS) method was used to evaluate the surveillance indexes of measles in Hebei Province. Results The operation quality of the measles surveillance system in Hebei Province was improved year by year, with the highest quality in 2023, and all the indicators reached the monitoring program standards. The quality of measles surveillance system was not balanced among cities, and the main influencing factor was the substandard sensitivity indicators. The quality of measles surveillance system was the highest in Baoding City and the lowest in Zhangjiakou City. Conclusion The measles surveillance system in Hebei province is running well, and the sensitivity of the surveillance system should be improved to keep the high-quality operation of the surveillance system.
2.Effect of Wenyang Huazhuo Formula (温阳化浊方) on Reproductive Aging,Ovarian Mechanical Micro-environment,and Offspring Reproductive Potential in Aged Model Mice
Jiaqi XU ; Xiaoli ZHAO ; Nan JIANG ; Kaixi LI ; Yafei DING ; Zimu WEN ; Yingying JIA ; Mengjun JIANG ; Tian XIA
Journal of Traditional Chinese Medicine 2025;66(6):612-620
ObjectiveTo explore the possible mechanisms of Wenyang Huazhuo Formula (温阳化浊方, WHF) in improving reproductive aging from the perspective of the ovarian mechanical microenvironment. MethodsThe experiment included five groups, 3-month group (20 female mice at 3 months of age), 6-month group (20 female mice at 6 months of age), 6-month + WHF group (20 female mice at 5 months of age treated with WHF), 9-month group (20 female mice at 9 months of age), and 9-month + WHF group (20 female mice at 8 months of age treated with WHF). The 6-month + WHF group and 9-month + WHF group were orally administered WHF 41.2 g/(kg·d) once daily for 4 consecutive weeks. The other three groups received no intervention. Reproductive hormone levels were measured by ELISA. HE staining was used to count the numbers of various stages of follicles. Ovarian hyaluronic acid (HA) content and collagen fiber content were measured to evaluate the ovarian mechanical microenvironment. Superovulation was performed to observe the number of eggs obtained, as well as the number of offspring and birth weight to assess fertility. The in vitro fertilization and blastocyst culture of oocytes from female offspring in each group were observed to evaluate the effect of WHF on offspring reproductive potential. ResultsCompared with the 3-month group, the 6-month group and 9-month group showed significantly decreased serum levels of gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH), decreased ovarian collagen content, and reduced numbers of primordial and secondary follicles. In contrast, the numbers of primary follicles, antral follicles, and atretic follicles increased. The levels of anti-Müllerian hormone (AMH), ovarian HA content, and the fertilization rate, cleavage rate, and blastocyst formation rate of oocytes from offspring were significantly lower (P<0.05). Compared with the 6-month group, the 6-month + WHF group showed significantly reduced serum levels of GnRH, FSH, and LH, with a significant decrease in primary follicles, antral follicles, and atretic follicles as well as increase of AMH levels, ovarian HA content, number of primordial and secondary follicle, egg count, and offspring birth weight (P<0.05). Compared with the 9-month group, the 9-month + WHF group exhibited reduced GnRH, FSH, and collagen fiber content, as well as reduced number of primary follicles, antral follicles, and atretic follicles. However, AMH levels, ovarian HA content, number of primordial and secondary follicle, egg count, offspring numbers, birth weight, fertilization rate, cleavage rate, and blastocyst formation rate of oocytes from offspring all significantly increased (P<0.05). ConclusionWHF can significantly improve the ovarian reserve, fertility, and reproductive potential in offspring during reproductive mid-life and late-life stages. Its effect may be related to the remodeling of the mechanical microenvironment of aging ovaries. Moreover, the effect on the mechanical microenvironment remodeling of late-stage ovaries and the improvement of the offspring reproductive potential is more significant.
3.Allogeneic intrastromal lenticule implantation combined with corneal collagen cross-linking for moderate to advanced keratoconus
Jing ZHANG ; Jie HOU ; Yahui DONG ; Yulin LEI ; Yafei XU ; Fangfang SUN
International Eye Science 2025;25(9):1517-1522
AIM: To evaluate the safety and efficacy of allogeneic intrastromal lenticule implantation combined with corneal collagen cross-linking(CXL)in patients with moderate to advanced keratoconus.METHODS: A retrospective case series analysis was conducted. A total of 19 patients(20 eyes)with moderate to advanced keratoconus who underwent combined allogeneic intrastromal lenticule implantation and CXL at the Jinan Mingshui Eye Hospital from June 2021 to December 2023 were included. The uncorrected distance visual acuity(UCVA), thinnest corneal thickness, central corneal epithelial thickness, anterior corneal flat keratometry(Kf), steep keratometry(Ks), and mean keratometry(Km), as well as the first applanation time(A1T), the first applanation length(A1L), the velocity during the first applanation moment(VIN), the second applanation time(A2T), the second applanation length(A2L), the velocity during the second applanation moment(VOUT), highest concavity time(HCT), highest concavity radius(HCR), peak distance(PD), deformation amplitude(DA), stiffness parameter at first applanation(SP-A1), integrated radius(IR), central corneal thickness(CCT), intraocular pressure(IOP), corneal thickness-corrected IOP, biomechanically intraocular pressure IOP(bIOP), and corneal thickness variation rate(ARTH)were compared between the two groups before surgery and at 1 wk, 1, 3 and 6 mo after surgery.RESULTS: All patients successfully completed the surgery without any intraoperative complications. No significant differences were observed between pre-operative and post-operative measurements for UCVA or the corneal biomechanical parameters, including A1L, A2L, PD, A1T, A2T, VIN, VOUT, DA, IOP, and bIOP(all P>0.05). Significant differences were found between pre-operative and post-operative values for corneal thinnest point thickness, central corneal epithelial thickness, Kf, Ks, Km, and the corneal biomechanical parameters, including HCT, HCR, SP-A1, ARTH, IR, and CCT(all P<0.05). The anterior corneal curvature demonstrated an initial increase followed by a decrease post-operatively. Furthermore, significant differences were observed between pre-operative and post-operative values for HCT, HCR, SP-A1, ARTH, IR, and CCT(all P<0.005).CONCLUSION: Allogenic intrastromal lenticule implantation combined with corneal collagen cross-linking demonstrates favorable safety and stability in treating moderate-to-advanced keratoconus. This combined procedure effectively increases corneal thickness and rigidity, resulting in corneas that are more resistant to deformation postoperatively.
4.Establishment and optimization of a high-performance size-exclusion chromatography method for quantifying the classical swine fever virus E2 protein.
Xiaojuan ZHANG ; Bo YANG ; Gaoyuan XU ; Mingxing REN ; Ji TANG ; Hongshuo LIU ; Zhankui LIU ; Yafei LI ; Xiangru WANG
Chinese Journal of Biotechnology 2025;41(7):2774-2788
This study aims to establish a high-performance size-exclusion chromatography (HPSEC) method for determining the content of the classical swine fever virus (CSFV) E2 protein and screen the optimal stabilizer to enhance the stability of this protein. The optimal detection conditions were determined by optimizing the composition of the mobile phase, and characteristic chromatographic peaks were identified by SDS-PAGE and Western blotting. The specificity, repeatability, precision, linearity, limit of detection (LOD), and limit of quantitation (LOQ) of the method were assessed. The method established was used to determine the content of CSFV E2 protein antigen and vaccine. Differential scanning fluorimetry (DSF) was employed to screen the buffer system, pH, and salt ion concentrations, and sugar, amino acid, and alcohol stabilizers were further screened. The results showed that using a 200 mmol/L phosphate buffer provided the best column efficiency. An antigen-specific chromatographic peak appeared at the retention time of 18 min, which was identified as the CSFV E2 protein by SDS-PAGE and Western blotting. The method exhibited high specificity for detecting the CSFV E2 protein, with no absorbance peak observed in the blank control. The relative standard deviation (RSD) of the peak area for six repeated injections of the CSFV E2 protein was 0.74%, indicating good repeatability of the method. The RSD for repeated detection of two different concentrations of CSFV E2 protein samples by different operators at different time points was less than 2%, suggesting good intermediate precision of the method. The peak area of the CSFV E2 protein was linearly related to its concentration, with the regression equation showing R2 of 1.000. The LOD and LOQ of the method were 14.88 μg/mL and 29.75 μg/mL, respectively. Application of the developed method in the detection of three batches of CSFV E2 protein antigen and three batches of vaccine demonstrated results consistent with those from the bicinchoninic acid (BCA) assay, which meant that the method could accurately determine the content of CSFV E2 protein antigen and vaccine. The DSF method identified 50 mmol/L Tris-HCl at pH 8.0 as the optimal buffer, and the addition of sugar and alcohol stabilizers further improved the stability of the CSFV E2 protein. The HPSEC method established in this study is simple, fast, and exhibits good accuracy and repeatability, enabling precise measurement of the CSFV E2 protein content. It is expected to play a crucial role in the quality control of the CSFV E2 vaccine. Furthermore, the strategy for improving the CSFV E2 protein stability, identified through DSF screening, has significant implications for enhancing the stability of the CSFV E2 vaccine.
Classical Swine Fever Virus/chemistry*
;
Chromatography, Gel/methods*
;
Animals
;
Swine
;
Viral Envelope Proteins/immunology*
5.Efficacy and safety of venetoclax combined with hypomethylating agents in the treatment of 83 patients with higher-risk myelodysplastic syndromes
Liu LIU ; Feng HE ; Yan XU ; Tao LI ; Yafei LI ; Ping TANG ; Ling SUN
Chinese Journal of Hematology 2024;45(3):277-283
Objective:This study aimed to evaluate the efficacy and safety of venetoclax (VEN) combined with hypomethylating agents (HMA) in the treatment of higher-risk myelodysplastic syndromes (HR-MDS) and analyze the factors influencing their therapeutic effect.Methods:The clinical data of 83 patients with HR-MDS who were diagnosed at the First Affiliated Hospital of Zhengzhou University between November 2019 and May 2023 were retrospectively analyzed. All patients were treated with VEN combined with HMA. The Kaplan-Meier method was used to depict the survival curves, and the log-rank test was used to compare survival between the groups.Results:The median age was 57 (15-82) years old, and 51 patients (61.4%) were male. Forty-five patients (54.2%) were initially treated with HMA, 23 (27.7%) received ≤4 cycles of HMA, and 15 (18.1%) demonstrated HMA failure. At the median follow-up of 10.3 (0.6-34.4) months, the overall response rate (ORR) was 62.7% (52/83), including 18 patients (21.7%) with a complete response (CR), 14 (16.9%) with a bone marrow CR (mCR) with hematological improvement, and 20 (24.1%) with a mCR. The ORR of patients with initial treatment, ≤4 HMA cycles, and HMA failure were 66.7%, 60.9%, and 53.3%, respectively ( P=0.641). The median overall survival time was 14.6 (95% CI 7.2-22.0) months, and the median progression-free survival time was 8.9 (95% CI 6.7-11.1) months. The multivariate analysis showed that serum alkaline phosphatase (ALP) ≥90 U/L (OR=14.574, 95% CI 3.036-69.951, P=0.001), TP53 mutation ( OR=13.052, 95% CI 1.982-85.932, P=0.008), and U2AF1 mutation ( OR=7.720, 95% CI 1.540-38.698, P=0.013) were independent risk factors for poor efficacy of VEN combined with HMA. Hematological toxicity occurred in all patients, and the incidence of treatment-induced grade 3-4 leukopenia was 48.2% (40/83). Infection was the most common non-hematological adverse event, mainly pulmonary infection (31.3%) . Conclusion:VEN combined with HMA had a high response rate in patients with HR-MDS, both at initial treatment and with HMA failure. ALP ≥ 90 U/L, TP53 mutation, and U2AF1 mutation were independent risk factors for non-response to treatment.
6.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.


Result Analysis
Print
Save
E-mail