1.Carbon-friendly ecological cultivation mode of Dendrobium huoshanense based on greenhouse gas emission measurement.
Di TIAN ; Jun-Wei YANG ; Bing-Rui CHEN ; Xiu-Lian CHI ; Yan-Yan HU ; Sheng-Nan TANG ; Guang YANG ; Meng CHENG ; Ya-Feng DAI ; Shi-Wen WANG
China Journal of Chinese Materia Medica 2025;50(1):93-101
Ecological cultivation is an important way for the sustainable production of traditional Chinese medicine in the context of the carbon peaking and carbon neutrality goals. Facility cultivation and simulative habitat cultivation modes have been developed and applied to develop the endangered Dendrobium huoshanense on the basis of protection. However, the differences in the greenhouse gas emissions and global warming potential of these cultivation modes remain unexplored, which limits the accurate assessment of carbon-friendly ecological cultivation modes of D. huoshanense. Greenhouse gas emission flux monitoring based on the static chamber method provides an effective way to solve this problem. Therefore, this study conducted a field experiment in the facility cultivation and simulative habitat cultivation modes at a D. huoshanense cultivation base in Dabie Mountains, Anhui Province. From April 2023 to March 2024, samples of greenhouse gases were collected every month, and the concentrations of CO_2, CH_4, and N_2O of the samples were then detected by gas chromatography. The greenhouse gas emission fluxes, cumulative emissions, and global warming potential were further calculated, and the following results were obtained.(1)The two cultivation modes of D. huoshanense showed significant differences in greenhouse gas emission fluxes, especially the CO_2 emission flux, with a pattern of facility cultivation>simulative habitat cultivation [(35.60±11.70)mg·m~(-2)·h~(-1) vs(2.10±4.59)mg·m~(-2)·h~(-1)].(2) The annual cumulative CO_2 emission flux in the case of facility cultivation was significantly higher than that of simulative habitat cultivation[(3 077.00±842.00)kg·hm~(-2) vs(221.00±332.00)kg·hm~(-2)], while no significant difference was found in annual cumulative CH_4 and N_2O emission fluxes.(3) The facility cultivation mode had a significantly higher global warming potential than the simulative habitat cultivation mode [(3 053.00±847.00)kg·hm~(-2) vs(196.00±362.00)kg·hm~(-2)]. Overall, the simulative habitat cultivation of D. huoshanense has obvious carbon-friendly characteristics compared with facility cultivation, which is in line with the concept of ecological cultivation of medicinal plants. This study is of great reference significance for the implementation and promotion of the ecological cultivation mode of D. huoshanense under carbon peaking and carbon neutrality goals.
Dendrobium/chemistry*
;
Greenhouse Gases/metabolism*
;
Carbon/analysis*
;
Ecosystem
;
Carbon Dioxide/metabolism*
;
China
;
Global Warming
2.Protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on a yorkshire model of brain injury after traumatic blood loss.
Xiang-Yu SONG ; Yang-Hui DONG ; Zhi-Bo JIA ; Lei-Jia CHEN ; Meng-Yi CUI ; Yan-Jun GUAN ; Bo-Yao YANG ; Si-Ce WANG ; Sheng-Feng CHEN ; Peng-Kai LI ; Heng CHEN ; Hao-Chen ZUO ; Zhan-Cheng YANG ; Wen-Jing XU ; Ya-Qun ZHAO ; Jiang PENG
Chinese Journal of Traumatology 2025;28(6):469-476
PURPOSE:
To investigate the protective effect of sub-hypothermic mechanical perfusion combined with membrane lung oxygenation on ischemic hypoxic injury of yorkshire brain tissue caused by traumatic blood loss.
METHODS:
This article performed a random controlled trial. Brain tissue of 7 yorkshire was selected and divided into the sub-low temperature anterograde machine perfusion group (n = 4) and the blank control group (n = 3) using the random number table method. A yorkshire model of brain tissue injury induced by traumatic blood loss was established. Firstly, the perfusion temperature and blood oxygen saturation were monitored in real-time during the perfusion process. The number of red blood cells, hemoglobin content, NA+, K+, and Ca2+ ions concentrations and pH of the perfusate were detected. Following perfusion, we specifically examined the parietal lobe to assess its water content. The prefrontal cortex and hippocampus were then dissected for histological evaluation, allowing us to investigate potential regional differences in tissue injury. The blank control group was sampled directly before perfusion. All statistical analyses and graphs were performed using GraphPad Prism 8.0 Student t-test. All tests were two-sided, and p value of less than 0.05 was considered to indicate statistical significance.
RESULTS:
The contents of red blood cells and hemoglobin during perfusion were maintained at normal levels but more red blood cells were destroyed 3 h after the perfusion. The blood oxygen saturation of the perfusion group was maintained at 95% - 98%. NA+ and K+ concentrations were normal most of the time during perfusion but increased significantly at about 4 h. The Ca2+ concentration remained within the normal range at each period. Glucose levels were slightly higher than the baseline level. The pH of the perfusion solution was slightly lower at the beginning of perfusion, and then gradually increased to the normal level. The water content of brain tissue in the sub-low and docile perfusion group was 78.95% ± 0.39%, which was significantly higher than that in the control group (75.27% ± 0.55%, t = 10.49, p < 0.001), and the difference was statistically significant. Compared with the blank control group, the structure and morphology of pyramidal neurons in the prefrontal cortex and CA1 region of the hippocampal gyrus were similar, and their integrity was better. The structural integrity of granulosa neurons was destroyed and cell edema increased in the perfusion group compared with the blank control group. Immunofluorescence staining for glail fibrillary acidic protein and Iba1, markers of glial cells, revealed well-preserved cell structures in the perfusion group. While there were indications of abnormal cellular activity, the analysis showed no significant difference in axon thickness or integrity compared to the 1-h blank control group.
CONCLUSIONS
Mild hypothermic machine perfusion can improve ischemia and hypoxia injury of yorkshire brain tissue caused by traumatic blood loss and delay the necrosis and apoptosis of yorkshire brain tissue by continuous oxygen supply, maintaining ion homeostasis and reducing tissue metabolism level.
Animals
;
Perfusion/methods*
;
Disease Models, Animal
;
Brain Injuries/etiology*
;
Swine
;
Male
;
Hypothermia, Induced/methods*
3.A new pyrazine from Hypecoum erectum L.
Yun LIU ; Meng-ya HU ; Wen-jing ZHANG ; Yu-xin FAN ; Rui-wen XU ; Deng-hui ZHU ; Yan-jun SUN ; Wei-sheng FENG ; Hui CHEN
Acta Pharmaceutica Sinica 2024;59(1):183-187
Four pyrazines were isolated from the
4. Research progress on bone metabolism and molecular mechanisms in accelerated aging SAMP6 mice
Shao-Yong MA ; Meng YANG ; Jia-Jia WANG ; Ya-Jun YANG
Chinese Pharmacological Bulletin 2024;40(1):16-19
Senile osteoporosis (SOP) is a systemic bone disease characterized by increased susceptibility to fractures. The pathogenesis of SOP is complex and not well understood. Currently, the rapid aging model mouse, senescence accelerated mouse prone 6 (SAMP6), is an ideal model for studying the mechanisms of SOP development and exploring its prevention and treatment. This model exhibits characteristics including increased bone fragility, degradation of bone microstructure, loss of bone matrix, and abnormal metabolism and dysfunction of bone cells, faithfully replicating the process of SOP occurrence and progression at both macroscopic and microscopic levels.
5.Study on inhibitory effect of alisol B on non-small cell lung cancer based on network pharmacology and its mechanism
Liu-Yan XIANG ; Wen-Xuan WANG ; Si-Meng GU ; Xiao-Qian ZHANG ; Lu-Yao LI ; Yu-Qian LI ; Yuan-Ru WANG ; Qi-Qi LEI ; Xue YANG ; Ya-Jun CAO ; Xue-Jun LI
Chinese Pharmacological Bulletin 2024;40(12):2375-2384
Aim To explore the potential genes and mechanism of alisol B in the treatment of non-small cell lung cancer(NSCLC).Methods The proliferation and migration of NSCLC cells were detected by CCK-8 and Transwell.Genes of NSCLC and alisol B were col-lected through TCGA and compound gene prediction database,and their intersection genes were obtained.The network of protein-protein interaction(PPI)was constructed by using String database,and the top 20 key nodes were screened out,and the prognosis-related proteins related to the prognosis of NSCLC were screened out by using R language,and the intersection of them was obtained.The potential mechanism of ali-sol B on NSCLC was explored by KEGG and GO en-richment analysis and the relationship between related genes and immune cells,which was verified by cell-lev-el experiments.Results Alisol B inhibited the cell activity and migration ability of NSCLC cells.Five im-portant genes were identified by network pharmacologi-cal analysis:CCNE1,CDK1,COL1A1,COL1A2 and COL3A1.The results of cell experiment showed that al-isol B down-regulated the expression of Cyclin E1,CDK1 and COL1A2 in NSCLC cells.In addition,alisol B could inhibit the expression of COL1A2 and M2 macrophage marker CD206 in macrophages.Conclu-sions Alisol B may inhibit the proliferation of tumor cells by down-regulating CDK1 and Cyclin E1,and may affect the function of macrophages by inhibiting COL1A2,thus regulating the tumor immune microenvi-ronment and inhibiting NSCLC.
6.Therapeutic effect of QiShenYiQi Dripping Pills on mice with heart failure with preserved ejection fraction
Zhen-zhen ZHANG ; Meng-yao WANG ; Yan-lu HAN ; Yun-hui HU ; Xiao-qiang LI ; Kai-min GUO ; Ya-jun DUAN ; Shuang ZHANG
Acta Pharmaceutica Sinica 2024;59(11):3094-3103
Heart failure with preserved ejection fraction (HFpEF) accounts for about half of the number of patients with heart failure. In addition to the typical features of heart failure such as myocardial stiffness and diastolic function impairment, the key characteristic of HFpEF is the normal left ventricular ejection fraction, which increases the difficulty of clinical diagnosis. QiShenYiQi Dripping Pills (QSYQ) is a standardized traditional Chinese medicine approved by the China Food and Drug Administration (CFDA), and many clinical studies have demonstrated the efficacy and safety of QSYQ in the treatment of heart failure with reduced ejection fraction, but the role of QSYQ in HFpEF has not been clarified. In this paper, high fat diet (HFD) and drinking water containing
7.Advances in roles of Parabacteroides distasonis and its regulation by traditional Chinese medicines.
Dan LONG ; Meng QIN ; Pei-Peng CHEN ; Xin HUANG ; Ya-Ting CAO ; Ai-Ling YIN ; Yue-Yue CHEN ; Hai-Dan WANG ; Yun-Ke GUO ; Xuan WANG ; Hai-Jian SUN ; Jin-Jun SHAN ; Wei ZHOU
China Journal of Chinese Materia Medica 2024;49(22):5988-5997
Parabacteroides distasonis is a gram-negative bacterium initially isolated from a clinical specimen in the 1930s. The strain was re-classified to form the new genus Parabacteroides in 2006. P. distasonis can regulate intestinal barrier function and plays a key role in immune response and metabolic regulation of bodies. Traditional Chinese medicine(TCM) is closely related to the intestinal microbiota. Polysaccharides, saponins, and other ingredients of TCM can treat diseases by interacting with P. distasonis, but the specific mechanisms underlying these processes are still unclear, requiring further exploration. This study reviewed the roles and related mechanisms of P. distasonis in inflammatory-immune diseases, metabolic diseases, cardiovascular disease, neuropsychiatric diseases, cancer, and other diseases and summarized the relevant research results of TCM to prevent and treat diseases by regulating P. distasonis. This study provides a reference for subsequent exploration of P. distasonis and research on the interaction between TCM and intestinal microbiota.
Humans
;
Gastrointestinal Microbiome/drug effects*
;
Medicine, Chinese Traditional
;
Animals
;
Bacteroidetes
;
Drugs, Chinese Herbal/pharmacology*
8.Regulation of Bifidobacterium-short chain fatty acid metabolism and improvement of intestinal toxicity of vinegar-processed Euphorbiae Pekinensis Radix.
Ling-Jun YE ; Xiao-Fen XU ; Sai-Ya CHEN ; Huan ZHANG ; Yi-Xuan GAN ; Tao MENG ; Rui DING ; Jing LI ; Gang CAO ; Kui-Long WANG
China Journal of Chinese Materia Medica 2024;49(23):6331-6341
To explore the mechanism by which vinegar-processed Euphorbiae Pekinensis Radix regulates gut microbiota and reduces intestinal toxicity, this study aimed to identify key microbial communities related to vinegar-induced detoxification and verify their functions. Using a derivatization method, the study measured the content of short-chain fatty acids(SCFAs) in feces before and after vinegar-processing of Euphorbiae Pekinensis Radix. Combined with the results of previous gut microbiota sequencing, correlation analysis was used to identify key microbial communities related to SCFAs content. Through single-bacterium transplantation experiments, the role of key microbial communities in regulating SCFAs metabolism and alleviating the intestinal toxicity of Euphorbiae Pekinensis Radix was clarified. Fecal extracts were then added to a co-culture system of Caco-2 and RAW264.7 cells, and toxicity differences were evaluated using intestinal tight junction proteins and inflammatory factors as indicators. Additionally, the application of a SCFAs receptor blocker helped confirm the role of SCFAs in reducing intestinal toxicity during vinegar-processing of Euphorbiae Pekinensis Radix. The results of this study indicated that vinegar-processing of Euphorbiae Pekinensis Radix improved the decline in SCFAs content caused by the raw material. Correlation analysis revealed that Bifidobacterium was positively correlated with the levels of acetic acid, propionic acid, isobutyric acid, n-butyric acid, isovaleric acid, and n-valeric acid. RESULTS:: from single-bacterium transplantation experiments demonstrated that Bifidobacterium could mitigate the reduction in SCFAs content induced by raw Euphorbiae Pekinensis Radix, enhance the expression of tight junction proteins, and reduce intestinal inflammation. Similarly, cell experiment results confirmed that fecal extracts from Bifidobacterium-transplanted mice alleviated inflammation and increased the expression of tight junction proteins in intestinal epithelial cells. The use of the free fatty acid receptor-2 inhibitor GLPG0974 verified that this improvement effect was related to the SCFAs pathway. This study demonstrates that Bifidobacterium is the key microbial community responsible for reducing intestinal toxicity in vinegar-processed Euphorbiae Pekinensis Radix. Vinegar-processing increases the abundance of Bifidobacterium, elevates the intestinal SCFAs content, inhibits intestinal inflammation, and enhances the expression of tight junction proteins, thereby improving the intestinal toxicity of Euphorbiae Pekinensis Radix.
Animals
;
Mice
;
Humans
;
Acetic Acid/chemistry*
;
Gastrointestinal Microbiome/drug effects*
;
Fatty Acids, Volatile/metabolism*
;
Bifidobacterium/genetics*
;
Caco-2 Cells
;
Intestines/microbiology*
;
Drugs, Chinese Herbal/chemistry*
;
Euphorbia/toxicity*
;
RAW 264.7 Cells
;
Male
;
Feces/chemistry*
;
Intestinal Mucosa/drug effects*
9.Safety and efficacy of different loading doses followed by pro re nata regimens of Conbercept in the treatment of diabetic macular edema
Ting MENG ; Hong-Yan SUN ; Bin LUO ; Jing WANG ; Li-Yu WANG ; Ya-Li GAO ; Li JIANG ; Jun WANG ; Ting-Ming DENG ; Ai-Neng ZENG ; Xiao-Ling LUO ; Ming-Ming YANG
International Eye Science 2023;23(1):138-141
AIM: To evaluate the efficacy and safety of different Conbercept treatment on diabetic macular edema(DME)with 3+PRN and 5+PRN.METHODS: Retrospective case-control study. A total of 51 patients(92 eyes)with DME who were treated in our hospital during December 2019 and June 2020 were included, and they were divided into 3+PRN group with 26 cases(48 eyes)and 5+PRN group with 25 cases(44 eyes). All patients received monthly follow-up for 12mo and the changes of best-corrected visual acuity(BCVA)and central macular thickness(CMT), the number of intravitreal injections and the occurrence of complications were compared and observed in the two groups.RESULTS:After follow-up for 12mo, there was no difference in the average injection times between the 3+PRN group and the 5+PRN group(7.24±0.91 times vs. 7.56±1.04 times, P=0.117). The BCVA and CMT of the two groups improved at 3, 6, 9, and 12mo after treatment compared with those before treatment(all P<0.05), and the BCVA and CMT of the 5+PRN group were better than those of the 3+PRN group at 6, 9, and 12mo after treatment(all P<0.05). During the follow-up period, no serious adverse events occurred in the two groups of patients, and the total incidence of ocular adverse events in the two groups was 27%. All adverse events were improved after symptomatic treatment.CONCLUSION: Both the 3+PRN and 5+PRN treatment strategy of Conbercept can treat DME safely and effectively, the total times of injection were comparable. However, the BCVA and CMT improved more in the 5+PRN group than that in 3+PRN group.
10.Effects of soluble glycoprotein 130 on expression of p-STAT3 and vascular endothelial growth factor-A in retina of mice with diabetes mellitus
Guang-Hui LIU ; Chang-Xuan SHI ; Ya-Jun HONG ; Yong-Zheng ZHENG ; Hang WANG ; Chun MENG
International Eye Science 2023;23(3):375-378
AIM: To observe the effect of soluble glycoprotein 130(sgp130)on expression of p-STAT3 and vascular endothelial growth factor(VEGF)-A in retina of mice with diabetes mellitus(DM), and explore the possibility of sgp130 in interfering with inflammatory damage of diabetic retinopathy(DR).METHODS: A total of 45 mice were randomly divided into normal group, DM group and sgp130 group. DM models were made in DM group and sgp130 group with streptozotocin. No special intervention was given to normal group and DM group, but sgp130 group was given intravitreal injection of 1.5mg/mL sgp130 2μL at the 1 and 5wk. After 10wk, all the mice were sacrificed to assess the protein expression of interleukin 6(IL-6), p-STAT3 and VEGF-A in the retina.RESULTS: The expressions of IL-6, p-STAT3 and VEGF-A in retina of DM group were higher than those of normal group at 10wk(all P<0.01). The expression of p-STAT3 and VEGF-A in sgp130 group were lower than those in DM group(all P<0.01).CONCLUSION: The sgp130 can selectively antagonize the trans signal transduction pathway of IL-6, down-regulate the expression of downstream inflammatory factors VEGF-A, and it may be used in the intervention of retinal inflammatory damage related with IL-6 in DM.

Result Analysis
Print
Save
E-mail