1.Carbon-friendly ecological cultivation mode of Dendrobium huoshanense based on greenhouse gas emission measurement.
Di TIAN ; Jun-Wei YANG ; Bing-Rui CHEN ; Xiu-Lian CHI ; Yan-Yan HU ; Sheng-Nan TANG ; Guang YANG ; Meng CHENG ; Ya-Feng DAI ; Shi-Wen WANG
China Journal of Chinese Materia Medica 2025;50(1):93-101
Ecological cultivation is an important way for the sustainable production of traditional Chinese medicine in the context of the carbon peaking and carbon neutrality goals. Facility cultivation and simulative habitat cultivation modes have been developed and applied to develop the endangered Dendrobium huoshanense on the basis of protection. However, the differences in the greenhouse gas emissions and global warming potential of these cultivation modes remain unexplored, which limits the accurate assessment of carbon-friendly ecological cultivation modes of D. huoshanense. Greenhouse gas emission flux monitoring based on the static chamber method provides an effective way to solve this problem. Therefore, this study conducted a field experiment in the facility cultivation and simulative habitat cultivation modes at a D. huoshanense cultivation base in Dabie Mountains, Anhui Province. From April 2023 to March 2024, samples of greenhouse gases were collected every month, and the concentrations of CO_2, CH_4, and N_2O of the samples were then detected by gas chromatography. The greenhouse gas emission fluxes, cumulative emissions, and global warming potential were further calculated, and the following results were obtained.(1)The two cultivation modes of D. huoshanense showed significant differences in greenhouse gas emission fluxes, especially the CO_2 emission flux, with a pattern of facility cultivation>simulative habitat cultivation [(35.60±11.70)mg·m~(-2)·h~(-1) vs(2.10±4.59)mg·m~(-2)·h~(-1)].(2) The annual cumulative CO_2 emission flux in the case of facility cultivation was significantly higher than that of simulative habitat cultivation[(3 077.00±842.00)kg·hm~(-2) vs(221.00±332.00)kg·hm~(-2)], while no significant difference was found in annual cumulative CH_4 and N_2O emission fluxes.(3) The facility cultivation mode had a significantly higher global warming potential than the simulative habitat cultivation mode [(3 053.00±847.00)kg·hm~(-2) vs(196.00±362.00)kg·hm~(-2)]. Overall, the simulative habitat cultivation of D. huoshanense has obvious carbon-friendly characteristics compared with facility cultivation, which is in line with the concept of ecological cultivation of medicinal plants. This study is of great reference significance for the implementation and promotion of the ecological cultivation mode of D. huoshanense under carbon peaking and carbon neutrality goals.
Dendrobium/chemistry*
;
Greenhouse Gases/metabolism*
;
Carbon/analysis*
;
Ecosystem
;
Carbon Dioxide/metabolism*
;
China
;
Global Warming
2.Construction of Saccharomyces cerevisiae cell factory for efficient biosynthesis of ferruginol.
Mei-Ling JIANG ; Zhen-Jiang TIAN ; Hao TANG ; Xin-Qi SONG ; Jian WANG ; Ying MA ; Ping SU ; Guo-Wei JIA ; Ya-Ting HU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(4):1031-1042
Diterpenoid ferruginol is a key intermediate in biosynthesis of active ingredients such as tanshinone and carnosic acid.However, the traditional process of obtaining ferruginol from plants is often cumbersome and inefficient. In recent years, the increasingly developing gene editing technology has been gradually applied to the heterologous production of natural products, but the production of ferruginol in microbe is still very low, which has become an obstacle to the efficient biosynthesis of downstream chemicals, such as tanshinone. In this study, miltiradiene was produced by integrating the shortened diterpene synthase fusion protein,and the key genes in the MVA pathway were overexpressed to improve the yield of miltiradiene. Under the shake flask fermentation condition, the yield of miltiradiene reached about(113. 12±17. 4)mg·L~(-1). Subsequently, this study integrated the ferruginol synthase Sm CYP76AH1 and Sm CPR1 to reconstruct the ferruginol pathway and thereby realized the heterologous synthesis of ferruginol in Saccharomyces cerevisiae. The study selected the best ferruginol synthase(Il CYP76AH46) from different plants and optimized the expression of pathway genes through redox partner engineering to increase the yield of ferruginol. By increasing the copy number of diterpene synthase, CYP450, and CPR, the yield of ferruginol reached(370. 39± 21. 65) mg·L~(-1) in the shake flask, which was increased by 21. 57-fold compared with that when the initial ferruginol strain JMLT05 was used. Finally, 1 083. 51 mg·L~(-1) ferruginol was obtained by fed-batch fermentation, which is the highest yield of ferruginol from biosynthesis so far. This study provides not only research ideas for other metabolic engineering but also a platform for the construction of cell factories for downstream products.
Saccharomyces cerevisiae/genetics*
;
Diterpenes/metabolism*
;
Metabolic Engineering
;
Fermentation
;
Abietanes
3.Traditional Chinese medicine understanding and treatment of acute myocardial infarction complicated with acute upper gastrointestinal bleeding.
Xing-Jiang XIONG ; Fu-Kun LUO ; Xiao-Ya WANG ; Yu LAN ; Peng-Qian WANG
China Journal of Chinese Materia Medica 2025;50(7):1969-1973
Acute myocardial infarction and acute upper gastrointestinal bleeding are both critical internal medicine conditions. The incidence of acute upper gastrointestinal bleeding in patients with acute myocardial infarction ranges from 5.31% to 8.90%, with a mortality rate as high as 20.50% to 35.70%. The pathogenesis may be related to the use of antiplatelet and anticoagulant drugs, as well as stress-induced injury. In treatment, the contradiction between antiplatelet/anticoagulation therapy and bleeding has made this disease a significant challenge in modern medicine. Therefore, re-exploring the etiology, pathogenesis, treatment principles, and methods of traditional Chinese medicine(TCM) for acute myocardial infarction and acute upper gastrointestinal bleeding is of great clinical importance. The research team has been working year-round in the coronary care unit(CCU), managing a large number of such severe patients. By revisiting classic texts and delving into the foundational theories of TCM and historical medical literature, it has been found that this disease falls under the category of "distant blood" in the Synopsis of the Golden Chamber. In terms of etiology, it is primarily associated with weakness of healthy Qi and damage caused by drug toxicity. In terms of pathogenesis, in the acute stage, it mainly manifests as insufficient spleen Yang, deficiency of spleen Qi, and failure of the spleen to control blood. In the remission stage, it is characterized by deficiency of both heart Qi and spleen blood. For treatment, during the acute stage, Huangtu Decoction is used to warm Yang and restrain blood, while in the remission stage, Guipi Decoction is administered to tonify Qi and nourish blood. During the treatment process, for patients with acute myocardial infarction complicated with acute upper gastrointestinal bleeding, it is crucial to flexibly apply the treatment principles of "Nil per os" in western medicine and "where there is stomach Qi, there is life; where there is no stomach Qi, there is death" in TCM. Early intervention with Huangtu Decoction can also prevent bleeding, with large doses being key to achieving hemostasis. It is important to address the pathogenesis of heat syndrome in addition to the core pathogenesis of Yang deficiency bleeding and to emphasize the follow-up treatment with Guipi Decoction for a successful outcome.
Humans
;
Gastrointestinal Hemorrhage/etiology*
;
Myocardial Infarction/drug therapy*
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Acute Disease
4.Root causes of quality changes in cultivated Chinese materia medica and countermeasures for high-quality production.
Chao-Geng LYU ; Chuan-Zhi KANG ; Ya-Li HE ; Zhi-Lai ZHAN ; Sheng WANG ; Xiu-Fu WAN ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2025;50(13):3529-3535
In order to support the implementation of the Opinions on Improving the Quality of Traditional Chinese Medicine and Promoting the High-Quality Development of the Traditional Chinese Medicine Industry and fundamentally promote the high-quality development of Chinese materia medica(CMM) industry, this article analyzed the quality and safety issues arising during the transition of CMM from wild harvesting to cultivation. Root causes of these issues were identified, including changes in the habitats of medicinal plants caused by inappropriate field cultivation patterns, excessive use of chemical inputs such as fertilizers and pesticides, and shortened cultivation periods due to rising economic costs. To address the above issues, the following countermeasures and suggestions were proposed to advance the high-quality development of CMM:(1) comprehensively adjust the cultivation patterns, vigorously promote ecological cultivation of CMM, and ensure production quality and safety of CMM from the source;(2) strengthen the breeding of high-quality, stress-resistant CMM varieties, improve cultivation techniques to reduce the use of fertilizers and pesticides, and improve the quality and efficiency of ecological cultivation of CMM;(3) systematically design the production, operation, and supervision models for ecological cultivation of CMM, carry out demonstrations of "high quality with fair price", and ensure the sustainable development of ecological cultivation of CMM.
Drugs, Chinese Herbal/standards*
;
Quality Control
;
Plants, Medicinal/chemistry*
;
Plant Roots/chemistry*
;
China
;
Fertilizers/analysis*
;
Materia Medica/standards*
;
Medicine, Chinese Traditional/standards*
5.Impact of Laboratory Analytical Indicators on Positive Blood Culture Detection Rates: A Single Center Study.
Di WANG ; Ling Li LIU ; Rui Rui MA ; Li Jun DU ; Gui Xue CHENG ; Ya Li LIU ; Qiao Lian YI ; Ying Chun XU
Biomedical and Environmental Sciences 2025;38(3):303-312
OBJECTIVE:
Blood culture remains the gold standard for diagnosing bloodstream infections. Clinical laboratories must ensure the quality of blood culture processes from receipt to obtaining definitive results. We examined laboratory analytical indicators associated with positive blood culture results.
METHODS:
Blood cultures collected from Peking Union Medical College Hospital between January 1, 2020, and December 31, 2022, were retrospectively analyzed. The mode of transportation (piping logistics delivery vs. staff), source of blood cultures (outpatient/emergency department vs. inpatient department), rotation of personnel, and time of reception (8:00-19:59 vs. 20:00-07:59) were compared between blood culture-positive and -negative results.
RESULTS:
Between 2020 and 2022, the total positive rate of blood culture was 8.07%. The positive rate of blood cultures in the outpatient/emergency department was significantly higher than that in the inpatient department (12.46% vs. 5.83%; P < 0.0001). The time-to-detection of blood cultures was significantly affected by the delivery mode and personnel rotation. The blood culture positive rate of the total pre-analytical time within 1 h was significantly higher than that within 1-2 h or > 2 h ( P < 0.0170).
CONCLUSION
Laboratory analytical indicators such as patient source, transportation mode, and personnel rotation significantly impacted the positive detection rate or time of blood culture.
Blood Culture/statistics & numerical data*
;
Humans
;
Retrospective Studies
;
Emergency Service, Hospital/statistics & numerical data*
6.Clinicopathological Features and Long-Term Prognostic Role of Human Epidermal Growth Factor Receptor-2 Low Expression in Chinese Patients with Early Breast Cancer:A Single-Institution Study
Qing Zi KONG ; Qun Li LIU ; Qin De HUANG ; Tong Yu WANG ; Jie Jing LI ; Zheng ZHANG ; Xi Xi WANG ; Ling Chuan LIU ; Di Ya ZHANG ; Kang Jia SHAO ; Min Yi ZHU ; Meng Yi CHEN ; Mei LIU ; Hong Wei ZHAO
Biomedical and Environmental Sciences 2024;37(5):457-470
Objective This study aimed to comprehensively analyze and compare the clinicopathological features and prognosis of Chinese patients with human epidermal growth factor receptor 2(HER2)-low early breast cancer(BC)and HER2-IHC0 BC. Methods Patients diagnosed with HER2-negative BC(N=999)at our institution between January 2011 and December 2015 formed our study population.Clinicopathological characteristics,association between estrogen receptor(ER)expression and HER2-low,and evolution of HER2 immunohistochemical(IHC)score were assessed.Kaplan-Meier method and log-rank test were used to compare the long-term survival outcomes(5-year follow-up)between the HER2-IHC0 and HER2-low groups. Results HER2-low BC group tended to demonstrate high expression of ER and more progesterone receptor(PgR)positivity than HER2-IHC0 BC group(P<0.001).The rate of HER2-low status increased with increasing ER expression levels(Mantel-Haenszel χ2 test,P<0.001,Pearson's R=0.159,P<0.001).Survival analysis revealed a significantly longer overall survival(OS)in HER2-low BC group than in HER2-IHC0 group(P=0.007)in the whole cohort and the hormone receptor(HR)-negative group.There were no significant differences between the two groups in terms of disease-free survival(DFS).The discordance rate of HER2 IHC scores between primary and metastatic sites was 36.84%. Conclusion HER2-low BC may not be regarded as a unique BC group in this population-based study due to similar clinicopathological features and prognostic roles.
7.Phase Separation of Biomacromolecules and Its Important Role in Transcriptional Regulation
Xiang-Dong ZHAO ; Le WANG ; Lu-Jie MA ; De-Bao XIE ; Meng-Di GAO ; Ya-Nan MENG ; Fan-Li ZENG
Progress in Biochemistry and Biophysics 2024;51(4):743-753
Cells not only contain membrane-bound organelles (MBOs), but also membraneless organelles (MLOs) formed by condensation of many biomacromolecules. Examples include RNA-protein granules such as nucleoli and PML nuclear bodies (PML-NBs) in the nucleus, as well as stress granules and P-bodies in the cytoplasm. Phase separation is the basic organizing principle of the form of the condensates or membraneless organelles (MLOs) of biomacromolecules including proteins and nucleic acids. In particular, liquid-liquid phase separation (LLPS) compartmentalises and concentrates biological macromolecules into liquid condensates. It has been found that phase separation of biomacromolecules requires some typical intrinsic characteristics, such as intrinsically disordered regions, modular domains and multivalent interactions. The phase separation of biomacromolecules plays a key role in many important cell activities. In recent years, the phase separation of biomacromolecules phase has become a focus of research in gene transcriptional regulation. Transcriptional regulatory elements such as RNA polymerases, transcription factors (TFs), and super enhancers (SEs) all play important roles through phase separation. Our group has previously reported for the first time that long-term inactivation or absence of assembly factors leads to the formation of condensates of RNA polymerase II (RNAPII) subunits in the cytoplasm, and this process is reversible, suggesting a novel regulatory model of eukaryotic transcription machinery. The phase separation of biomacromolecules provides a biophysical understanding for the rapid transmission of transcriptional signals by a large number of TFs. Moreover, phase separation during transcriptional regulation is closely related to the occurrence of cancer. For example, the activation of oncogenes is usually associated with the formation of phase separation condensates at the SEs. In this review, the intrinsic characteristics of the formation of biomacromolecules phase separation and the important role of phase separation in transcriptional regulation are reviewed, which will provide reference for understanding basic cell activities and gene regulation in cancer.
8.Design of medical positive pressure protective suit for long-voyage aeromedical evacuation
Yu-Juan SU ; Li-Qun WANG ; Ya-Di ZHANG ; Xiang-Yi YANG ; Zhen-Yao SONG
Chinese Medical Equipment Journal 2024;45(11):113-116
Objective To develop a medical positive pressure protective suit for long-voyage aeromedical evacuation to realize protective isolation and drinking water and energy supply for medical personnel during long-voyage aeromedical evacuation of respiratory infectious disease patients.Methods The medical positive pressure protective suit had a one-piece structure,with its main part made of hydroentangled non-woven fabric,head and forebreast parts made of amorphous polyethylene terephthalate anti-fog material and wearing-and taking-off parts sealed with zipper and autohesion,which was equipped with a portable positive pressure air supply device,an airborne centralized positive pressure air supply device and a monitoring and warning device.The portable positive pressure air supply device was fixed in the back of the suit at the waist,the airborne device was made by modifying the commercially available positive pressure air supply fan,and the monitoring and warning device monitored the air supply volume of the fan,the battery power and the pressure inside the suit.Results The suit behaved well in protection,clean fresh air supply without time limitation and facilitating hydration and energy replenishment of medical personnel by forming three activity spaces.Conclusion The suit developed can continuously provide a clean and comfortable microenvironment,meeting the requirements of medical personnel for protection and hydration and energy replenishment during long-voyage aeromedical evacuation.[Chinese Medical Equipment Journal,2024,45(11):113-116]
9.Site-directed mutagenesis of ent-kaurane diterpenoid C-19 oxidase TwKO in Tripterygium wilfordii.
Rong-Feng WANG ; Zheng LIU ; Xin-Meng WANG ; Wei GAO ; Jia-Dian WANG ; Ya-Ting HU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2024;49(24):6667-6675
Tripterifordin and neotripterifordin are important ent-kaurane diterpenoids in the Chinese medicinal herb Tripterygium wilfordii, possessing significant anti-HIV(human immunodeficiency virus) activity. On the basis of elucidating the natural biosynthetic pathways of these compounds, heterologous production with microbial cell factories can help to alleviate the reliance on plant resources and provide abundant raw materials for sustainable production. TwKO is the first CYP450 enzyme involved in the biosynthesis of tripterifordin and neotripterifordin. This study aimed to enhance the catalytic activity of TwKO by site-directed mutagenesis to benefit the production of tripterifordin and neotripterifordin in yeast. The AlphaFold DB established based on the AlphaFold 2 was employed to obtain the protein model of TwKO. According to multiple sequence alignments and principles of natural evolution, the key residues influencing the binding of TwKO to the substrate were identified. Subsequently, functional characterization of the mutants were conducted in Saccharomyces cerevisiae. A total of 71 mutants were obtained, among which 11 and 11 mutants had the abilities of enhancing the production of 16α-hydroxy-ent-kaurenol and 16α-hydroxy-ent-kaurenoic acid, respectively. In addition, 10 mutants could increase the proportion of the oxidation product of 16α-hydroxy-ent-kaurenol. In particular, R304 was identified as a key residue affecting the catalytic specificity of TwKO, the mutation of which led to the specific prodiction of 16α-hydroxy-ent-kaurenol. This study was the first to reveal the key residue affecting the catalytic activity of TwKO and obtained the mutants with increased TwKO activity, lay a foundation for the biosynthesis of tripterifordin and neotripterifordin.
Tripterygium/chemistry*
;
Mutagenesis, Site-Directed
;
Diterpenes, Kaurane/chemistry*
;
Plant Proteins/chemistry*
;
Cytochrome P-450 Enzyme System/chemistry*
;
Saccharomyces cerevisiae/metabolism*
10.Establishment of a standard DSS library for identification of original plants of medicinal materials in Chinese Pharmacopoeia.
Duo-Mei WANG ; Chao JIANG ; Jing-Zhe PU ; Chong HU ; Ling-Li CHEN ; Ya-Zhong ZHANG ; Yuan YUAN
China Journal of Chinese Materia Medica 2024;49(23):6249-6256
With the development of molecular pharmacognosy, the advantages of DNA molecular markers in the identification of original plants of Chinese medicinal materials are becoming increasingly significant. To compensate for the limitations of existing markers in the quality supervision of Chinese medicinal materials, our team has independently designed a new molecular marker named DNA signature sequence(DSS). This marker is a nucleotide sequence that only appears in a specific taxonomic unit, with a length of 40 bp and high identification accuracy. This article aims to screen and verify the DSS markers that can accurately identify the original plants of the medicinal materials included in the volume one of the Chinese Pharmacopoeia, establish the operating procedure for developing standard nucleotide sequences, and lay a foundation for the widespread application of polymerase chain reaction in the quality supervision of traditional Chinese medicine. Firstly, the Chloroplast Genome Information Resource(CGIR) was searched for the chloroplast genome sequences of the test samples, species of the same genus, and common background species. IdenDSS was used to obtain the DSS tags and specific identification primers of the tested species. After DNA extraction, PCR amplification, sequencing, and sequence alignments, a total of 203 DSS markers of Chinese medicinal materials were obtained for validation. The above sequences were uploaded to the Traditional Chinese Medicine Molecular Identification Platform(www.herbsdna.com), and a standard DSS library was established for identifying the original plants of medicinal materials, serving as an important tool for quality supervision of Chinese materia medica. On this basis, an operating procedure for DSS development is formed, laying a foundation for further DSS screening and application based on more diverse genome sequences.
Plants, Medicinal/classification*
;
DNA, Plant/genetics*
;
Drugs, Chinese Herbal
;
Pharmacopoeias as Topic
;
Genetic Markers
;
Medicine, Chinese Traditional

Result Analysis
Print
Save
E-mail