1.Overexpression of Escherchia coli phytase with high specific activity.
Hui-Ying LUO ; Bin YAO ; Tie-Zheng YUAN ; Ya-Rul WANG ; Xiu-Yun SHI ; Ning-Feng WU ; Yun-Liu FAN
Chinese Journal of Biotechnology 2004;20(1):78-84
High-level expression of phytase with high specific activity is an effective way to improve phytase fermentation potency and reduce its production cost. The gene appA encoding Escherchia coli phytase AppA with high specific activity was modified and artificially synthesized according to the bias in codon choice of the high expression gene in Pichia pastoris without changing the amino acid sequence of the AppA. The modified gene, appA-m, was inserted in the Pichia pastoris expression vector pPIC9, then introduced into the host Pichia pastoris by electroporation. The Pichia pastoris recombinants for phytase overexpression were screened by enzyme activity analysis and SDS-PAGE. The result of Southern blotting analysis of the recombinant yeast indicated that only one copy of the appA-m gene was integrated into the genome of Pichia pastoris. The result of Northern analysis of the recombinant yeast showed that the modified gene was effectively transcribed. SDS-PAGE analysis of the phytase expressed in Pichia pastoris revealed that the phytase was overexpressed and secreted into the medium supernatant. There are three phytase proteins with apparent molecular weight in approximately 50kD, 52kD and 54kD respectively in the media, which are larger in the size than the native phytase from E. coli. The results of N-terminal sequecing and deglycosylation of the expressed phytase in Pichia pastoris proved that the expressed phytase were glycosylated protein with different glycosylation degree. The expressed phytase Pichia pastoris shared similar pH and temperature optima to those of the natural phytase from E. coli and had highly resistant to pepsin digestion. In 5-L fermentor, after induced by 0.5% methanol for 120 h, the expression level of phytase protein was 2.5 mg/mL, and the phytase activity (fermentation potency) exceeded 7.5 x 10(6) IU/mL, which was the highest among those of all kinds of recombinant strains reported now.
6-Phytase
;
genetics
;
metabolism
;
Escherichia coli
;
enzymology
;
Escherichia coli Proteins
;
genetics
;
Fermentation
;
Pichia
;
genetics
;
Plasmids
;
Recombinant Proteins
;
biosynthesis