1.Bile acid metabolism and signaling in liver disease and therapy
Liver Research 2017;1(1):3-9
Bile acids play a critical role in the regulation of glucose,lipid,and energy metabolism through activation of the nuclear bile acid receptor farnesoid X receptor(FXR)and membrane G protein-coupled bile acid receptor-1(Gpbar-1,aka TGR5).Agonist activation of FXR and TGR5 improves insulin and glucose sensitivity and stimulates energy metabolism to prevent diabetes,obesity,and non-alcoholic fatty liver disease(NAFLD).Bile acids have both pro-and anti-inflammatory actions through FXR and TGR5 in the intestine and liver.In the intestine,bile acids activate FXR and TGR5 to stimulate fibroblast growth factor 15 and glucagon-like peptide-1 secretion.FXR and TGR5 agonists may have therapeutic potential for treating liver-related metabolic diseases,such as diabetes and NAFLD.
2.Up to date on cholesterol 7 alpha-hydroxylase(CYP7A1)in bile acid synthesis
Y.L.Chiang JOHN ; M.Ferrell JESSICA
Liver Research 2020;4(2):47-63
Cholesterol 7 alpha-hydroxylase(CYP7A1,EC1.14)is the first and rate-limiting enzyme in the classic bile acid synthesis pathway.Much progress has been made in understanding the transcriptional regulation of CYP7A1 gene expression and the underlying molecular mechanisms of bile acid feedback regulation of CYP7A1 and bile acid synthesis in the last three decades.Discovery of bile acid-activated receptors and their roles in the regulation of lipid,glucose and energy metabolism have been translated to the development of bile acid-based drug therapies for the treatment of liver-related metabolic diseases such as alcoholic and non-alcoholic fatty liver diseases,liver cirrhosis,diabetes,obesity and hepatocellular carcinoma.This review will provide an update on the advances in our understanding of the molecular biology and mechanistic insights of the regulation of CYP7A1 in bile acid synthesis in the last 40 years.