1.Expression of β-xylosidase An-xyl from Aspergillus niger and characterization of its xylose tolerance.
Le LI ; Cheng PENG ; Kunpeng YU ; Yiling TANG ; Yanling LIN ; Lijun LI ; Hui NI ; Qingbiao LI
Chinese Journal of Biotechnology 2023;39(11):4593-4607
The hydrolysis of xylo-oligosaccharides catalyzed by β-xylosidase plays an important role in the degradation of lignocellulose. However, the enzyme is easily inhibited by its catalytic product xylose, which severely limits its application. Based on molecular docking, this paper studied the xylose affinity of Aspergillus niger β-xylosidase An-xyl, which was significantly differentially expressed in the fermentation medium of tea stalks, through cloning, expression and characterization. The synergistic degradation effect of this enzyme and cellulase on lignocellulose in tea stems was investigated. Molecular docking showed that the affinity of An-xyl to xylose was lower than that of Aspergillus oryzae β-xylosidase with poor xylose tolerance. The Ki value of xylose inhibition constant of recombinant-expressed An-xyl was 433.2 mmol/L, higher than that of most β-xylosidases of the GH3 family. The Km and Vmax towards pNPX were 3.6 mmol/L and 10 000 μmol/(min·mL), respectively. The optimum temperature of An-xyl was 65 ℃, the optimum pH was 4.0, 61% of the An-xyl activity could be retained upon treatment at 65 ℃ for 300 min, and 80% of the An-xyl activity could be retained upon treatment at pH 2.0-8.0 for 24 h. The hydrolysis of tea stem by An-xyl and cellulase produced 19.3% and 38.6% higher reducing sugar content at 2 h and 4 h, respectively, than that of using cellulase alone. This study showed that the An-xyl mined from differential expression exhibited high xylose tolerance and higher catalytic activity and stability, and could hydrolyze tea stem lignocellulose synergistically, which enriched the resource of β-xylosidase with high xylose tolerance, thus may facilitate the advanced experimental research and its application.
Aspergillus niger/genetics*
;
Xylose/metabolism*
;
Molecular Docking Simulation
;
Xylosidases/genetics*
;
Cellulases
;
Tea
;
Hydrogen-Ion Concentration
;
Substrate Specificity
2.Expression and characterization of a xylosidase (Bxyl) from Bacillus halodurans C-125.
Yanli LIANG ; Xingyu LI ; Hyundong SHIN ; Rachel R CHEN ; Zichao MAO
Chinese Journal of Biotechnology 2009;25(9):1386-1393
A xylosidase gene, labeled as BH1068 in genome of Bacillus halodurans C-125, was successfully cloned and overexpressed in Escherichia coli JM109. The purified enzyme was thoroughly characterized and its xylosidase function was unambiguously confirmed. It has maximum activities in neutral condition and is stable over a wide range of pH (4.5-9.0). The enzyme has a broad temperature optimal (35 degrees C-45 degrees C) and is quite stable at temperature up to 45 degrees C. The unique pH and temperature profiles of the enzyme should allow a wide range of xylanolytic operational conditions. With high specific activity of 174 mU/mg protein for its artificial substrate (p-nitrophenyl-beta-xylose) and low xylose inhibition (inhibitor constant Ki = 300 mmol/L), this enzyme is among the most active and high tolerant bacterial xylosidase to xylose inhibition. Its high synergy with commercial xylanase has been demonstrated with beechwood xylan hydrolysis, achieving a hydrolysis yield of 40%. Its neutral pH optimal and high tolerance to product inhibition complements well with its fungal counterparts that are only optimal at acidic pH and susceptible to xylose inhibition. In conclusion, this enzyme has high potential in the saccharification of xylan and xylan-containing polysaccharides.
Amino Acid Sequence
;
Bacillus
;
classification
;
enzymology
;
genetics
;
Cloning, Molecular
;
Escherichia coli
;
genetics
;
metabolism
;
Hydrolysis
;
Molecular Sequence Data
;
Recombinant Proteins
;
genetics
;
metabolism
;
Substrate Specificity
;
Xylose
;
metabolism
;
Xylosidases
;
genetics
;
metabolism
3.Purification and characterization of a beta-D-xylosidase from Leifsonia shinshuensis DICP 16.
Hongwei LUAN ; Ying HU ; Xingbao LIU ; Dacheng HAO ; Ling YANG
Chinese Journal of Biotechnology 2008;24(5):867-873
A beta-D-xylosidase from Leifsonia shinshuensis DICP 16 was purified to apparent homogeneity using a combination of ammonium sulfate precipitation, DE 52 anion-exchange, Q-Sepharose Fast Flow anion-exchange, Toyopearl Butyl 650C hydrophobic-interaction and Sephacryl S-300 HR gel-permeation chromatography. The purified xylosidase consisted of two same subunits and had the relative molecular weight of 180 kD as determined by SDS-PAGE and gel-permeation chromatography. The maximal beta-D-xylosidase activity occurred at 55 degrees C and pH 7.0. It was stable at 45 degrees C and retained its original activity for 60 min. The stability declined rapidly when the temperature rose above 55 degrees C. The xylosidase was stable in the pH range from 6.0 to 11.0 for 20 h. At pH 7.0 and 45 degrees C the Km for p-nitrophenyl-beta-D-xylopyranoside (pNPX) was 1.04 mmol/L and the Vmx was 0.095 mmol nitrophenol/min/mg xylosidase. The enzyme was inhibited strongly by Fe2+ and Cu2+. It exhibited low levels of activity against other artificial substrates, compared to its activity against pNPX. When different natural xylosides were used as the substrates, the xylosidase showed distinct hydrolysis ability. It could hydrolyze 20-C, beta-(1-->6)-xyloside of ginsenoside Rb3 (G-Rb3) into ginsenoside Rd, but did not hydrolyze the other beta-D-glucosidic bonds of G-Rb3. Additionally, the xylosidase could not hydrolyze C-7 xylosyl-bearing taxanes.
Actinomycetales
;
classification
;
enzymology
;
Amino Acid Sequence
;
Culture Media
;
Hydrogen-Ion Concentration
;
Molecular Sequence Data
;
Sequence Analysis, Protein
;
Temperature
;
Xylosidases
;
chemistry
;
genetics
;
isolation & purification