1.Optimization of xylose fermentation for ethanol production by Candida shehatae HDYXHT-01.
Jingping GE ; Guoming LIU ; Xiaofeng YANG ; Hongbing SUN ; Hongzhi LING ; Wenxiang PING
Chinese Journal of Biotechnology 2011;27(3):404-411
Plackett-Burman (PB) design and central composite design (CCD) were applied to optimize of xylose fermentation for ethanol production by Candida shehatae HDYXHT-01. The PB results showed that (NH4)2SO4, KH2PO4, yeast extract and inoculum volume were the main affecting factors. With ethanol productivity as the target response, the optimal fermentation was determined by CCD and response surface analysis (RSM). The optimal fermentation conditions were (NH4)2SO4 1.73 g/L, KH2PO4 3.56 g/L, yeast extract 2.62 g/L and inoculum volume 5.66%. Other fermentation conditions were xylose 80 g/L, MgSO47H20 0.1 g/L, pH 5.0 and 250 mL flask containing 100 mL medium and cultivated at 30 degrees C for 48 h and the agitation speed was 140 r/min. Under this fermentation conditions, ethanol productivity was 26.18 g/L, which was 1.15 times of the initial.
Candida
;
metabolism
;
Ethanol
;
metabolism
;
Fermentation
;
Industrial Microbiology
;
Xylose
;
metabolism
2.Biocatalysis of formaldehyde to L-xylose.
Zhailin CHU ; Xiaoyun LU ; Yuwan LIU ; Bo CUI ; Meidong JING ; Huifeng JIANG
Chinese Journal of Biotechnology 2020;36(5):942-948
It is of great significance to use biosynthesis to transform the inorganic substance formaldehyde into organic sugars. Most important in this process was to find a suitable catalyst combination to achieve the dimerization of formaldehyde. In a recent report, an engineered glycolaldehyde synthase was reported to catalyze this reaction. It could be combined with engineered D-fructose-6-phosphate aldolase, a "one-pot enzyme" method, to synthesize L-xylose using formaldehyde and the conversion rate could reach up to 64%. This process also provides a reference for the synthesis of other sugars. With the increasing consumption of non-renewable resources, it was of great significance to convert formaldehyde into sugar by biosynthesis.
Biocatalysis
;
Formaldehyde
;
chemistry
;
Fructose-Bisphosphate Aldolase
;
metabolism
;
Xylose
;
chemical synthesis
3.Evaluation on glucose-xylose co-fermentation by a recombinant Zymomonas mobilis strain.
Quanzhou FENG ; Shizhong LI ; Li WANG ; Tiancheng LI
Chinese Journal of Biotechnology 2012;28(1):37-47
Co-fermentation of glucose and xylose is critical for cellulosic ethanol, as xylose is the second most abundant sugar in lignocellulosic hydrolysate. In this study, a xylose-utilizing recombinant Zymomonas mobilis TSH01 was constructed by gene cloning, and ethanol fermentation of the recombinant was evaluated under batch fermentation conditions with a fermentation time of 72 h. When the medium containing 8% glucose or xylose, was tested, all glucose and 98.9% xylose were consumed, with 87.8% and 78.3% ethanol yield, respectively. Furthermore, the medium containing glucose and xylose, each at a concentration of 8%, was tested, and 98.5% and 97.4% of glucose and xylose was fermented, with an ethanol yield of 94.9%. As for the hydrolysate of corn stover containing 3.2% glucose and 3.5% xylose, all glucose and 92.3% xylose were consumed, with an ethanol yield of 91.5%. In addition, monopotassium phosphate can facilitate the consumption of xylose and enhance ethanol yield.
Ethanol
;
metabolism
;
Fermentation
;
Glucose
;
metabolism
;
Recombination, Genetic
;
Xylose
;
metabolism
;
Zymomonas
;
genetics
;
metabolism
4.Progress in the pathway engineering of ethanol fermentation from xylose utilising recombinant Saccharomyces cerevisiae.
Yu SHEN ; Ying WANG ; Xiao-Ming BAO ; Yin-Bo QU
Chinese Journal of Biotechnology 2003;19(5):636-640
Pathway engineering was the third generation of gene engineering. Its main goals were to change metabolic flux and open a new metabolic pathway in organism. Application of recombinant DNA methods to restructure metabolic networks can improve production of metabolite and protein products by altering pathway distributions and rates. Ethanol is the most advanced liquid fuel because it is environmentally friendly. Enhancing fuel ethanol production will require developing lower-cost feedstock, and only lignocellulosic feedstock is available in sufficient quantities to substitute for corn starch. Xylose is the major pentose found in lignocellulosic materials and after glucose the most abundant sugar available in nature. Recently a lot of attentions have been focused on designing metabolic pathway of Saccharomyces cerevisiae in order to expand the substrate of ethanol fermentation, because it is a traditional ethanol producing strain and has wonderful properties for ethanol industry. However, it can not utilize xylose but convert the isomer, xylulose. Many attempts are based on introducing the genes in the pathway of xylose metabolism. The further research includes overexpressing the key enzyme or decreasing the unimportant flux. The sugars in lignocellulose hydrolyzates, therefore, could be efficiently utilized. Here, we describe the ethanol pathway engineering progress in ethanol fermentation from xylose with recombinant Saccharomyces cerevisiae.
Biotechnology
;
methods
;
Ethanol
;
metabolism
;
Fermentation
;
genetics
;
physiology
;
Recombination, Genetic
;
genetics
;
Saccharomyces cerevisiae
;
genetics
;
metabolism
;
Xylose
;
metabolism
5.Development of genetically stable recombinant Saccharomyces cerevisiae strains using combinational chromosomal integration.
Qi ZUO ; Xinqing ZHAO ; Haijun LIU ; Shiyang HU ; Zhongyi MA ; Fengwu BAI
Chinese Journal of Biotechnology 2014;30(4):669-673
Chromosomal integration enables stable phenotype and therefore has become an important strategy for breeding of industrial Saccharomyces cerevisiae strains. pAUR135 is a plasmid that enables recycling use of antibiotic selection marker, and once attached with designated homologous sequences, integration vector for stable expression can be constructed. Development of S. cerevisiae strains by metabolic engineering normally demands overexpression of multiple genes, and employing pAUR135 plasmid, it is possible to construct S. cerevisiae strains by combinational integration of multiple genes in multiple sites, which results in different ratios of expressions of these genes. Xylose utilization pathway was taken as an example, with three pAUR135-based plasmids carrying three xylose assimilation genes constructed in this study. The three genes were sequentially integrated on the chromosome of S. cerevisiae by combinational integration. Xylose utilization rate was improved 24.4%-35.5% in the combinational integration strain comparing with that of the control strain with all the three genes integrated in one location. Strain improvement achieved by combinational integration is a novel method to manipulate multiple genes for genetic engineering of S. cerevisiae, and the recombinant strains are free of foreign sequences and selection markers. In addition, stable phenotype can be maintained, which is important for breeding of industrial strains. Therefore, combinational integration employing pAUR135 is a novel method for metabolic engineering of industrial S. cerevisiae strains.
Genetic Engineering
;
methods
;
Genetic Vectors
;
Metabolic Engineering
;
Plasmids
;
genetics
;
Saccharomyces cerevisiae
;
genetics
;
Xylose
;
metabolism
6.Metabolic engineering for microbial production of ethanol from xylose: a review.
Ying ZHANG ; Ruiqiang MA ; Haozhou HONG ; Wei ZHANG ; Ming CHEN ; Wei LU
Chinese Journal of Biotechnology 2010;26(10):1436-1443
Discovery of an efficient bioconversion of cellulosic biomass and its hydrolysis to ethanol is the key to unlocking in developing of a bioethanol industry. The lack of industrially suitable microorganisms to convert xylose to ethanol fuel has been cited as a major technical bottleneck. In the past decades, many improvements have been made in the metabolic engineering of microorganisms, including Zymomonas mobilis, Escherichia coli, and yeasts, for the fermentation of xylose to produce ethanol by introducing genes for either xylose metabolism or ethanol production. The history and the current progress in constructing these strains are presented in this review.
Bacteria
;
genetics
;
metabolism
;
Ethanol
;
metabolism
;
Fermentation
;
Fungi
;
genetics
;
metabolism
;
Genetic Engineering
;
Industrial Microbiology
;
methods
;
Metabolic Engineering
;
Xylose
;
metabolism
7.The high ethanol tolerance in a thermophilic bacterium Anoxybacillus sp. WP06.
Hui PENG ; Yi GAO ; Yazhong XIAO
Chinese Journal of Biotechnology 2008;24(6):1117-1120
Anoxybacillus sp. WP06 is a thermophilic (optimum temperature for growth, 60 degrees C), facultative anaerobe. Strain WP06 is able to utilize a wide range of carbon sources such as glucose, xylose, arabinose, starch, maltose and sorbitol. Anaerobically, glucose and xylose were fermented to ethanol as minor products. Unlike most thermophilic bacteria isolated to date, strain WP06 is tolerant (maintained viability) to high ethanol concentrations up to 15% at 60 degrees C. The growth rate was slightly inhibited at 8% ethanol. The observation that strain WP06 exhibits higher tolerance of 15% ethanol at 60 degrees C exploits the level of ethanol tolerance in thermophilic bacteria. Strain WP06 may be candidate for mechanisms of ethanol tolerance in thermophilic bacteria.
Bacillaceae
;
drug effects
;
metabolism
;
physiology
;
Drug Tolerance
;
physiology
;
Ethanol
;
metabolism
;
pharmacology
;
Glucose
;
metabolism
;
Hot Temperature
;
Xylose
;
metabolism
8.Metabolic engineering for improving ethanol fermentation of xylose by wild yeast.
Lingyan ZHANG ; Liang ZHANG ; Zhongyang DING ; Zhengxiang WANG ; Guiyang SHI
Chinese Journal of Biotechnology 2008;24(6):950-956
One yeast strain, which was isolated from 256 natural samples, was found to be able to utilize D-xylose effectively. On the basis of assimilation physiological and molecular biological tests, the yeast strain was identified as a strain of Candida tropicalis. Furthermore, metabolic engineering breeding strategy was applied to change the metabolic flux in order to increase ethanol productivity. In this study, the C. tropicalis was used as the host strain and the plasmid pYX212-XYL2, which was formerly constructed for over expression of XYL2 gene encoding xylitol dehydrogenase (XDH) from Pichia stipitis, was used as the backbone of the recombinant vector. A hygro gene was inserted into downstream position of XYL2 gene, meanwhile, the result plasmid pXY212-XYL2-Hygro transformed into C. tropicalis by electroporation. Thus, a recombinant yeast C. tropicalis XYL2-7 was obtained through hygromycin B resistance screening and its specific XDH activity was 0.5 u/mg protein, which was 3 times more than that of the parent strain. Additionally, the recombinant yeast was applied in the fermentation of xylose. Compared with the parent yeast, it was concluded that the xylitol yield in the broth decreased by 3 times, however, the ethanol yield increased by 5 times. The feasibility of ethanol production from xylose by C. tropicalis was firstly studied in this paper. These research results are helpful to advance the bioconversion of renewable resources (e. g. straw, wheat bran, and husk) to fuel ethanol.
Candida tropicalis
;
genetics
;
metabolism
;
D-Xylulose Reductase
;
genetics
;
metabolism
;
Electroporation
;
Ethanol
;
metabolism
;
Fermentation
;
Pichia
;
enzymology
;
genetics
;
Recombination, Genetic
;
Xylose
;
metabolism
9.Mutating Escherichia coli by atmospheric and room temperature plasmas for succinic acid production from xylose.
Qing WAN ; Weijia CAO ; Changqing ZHANG ; Rongming LIU ; Liya LIANG ; Kequan CHEN ; Jiangfeng MA ; Min JIANG
Chinese Journal of Biotechnology 2013;29(11):1692-1695
Escherichia coli AFP111 is a spontaneous mutant with mutations in the glucose specific phosphotransferase system (ptsG) in NZN111 (delta pflAB deltaldhA). In AFP111, conversion of xylose to succinic acid generates 1.67 molecule of ATP per xylose. However, the strain needs 2.67 molecule ATP for xylose metabolism. Therefore, AFP111 cannot use xylose due to insufficient ATP under anaerobic condition. Through an atmospheric and room temperature plasma (ARTP) jet, we got a mutant strain named DC111 that could use xylose under anaerobic condition in M9 medium to produce succinic acid. After 72 h, DC111 consumed 10.52 g/L xylose to produce 6.46 g/L succinic acid, and the yield was 0.78 mol/mol. Furthermore, the reaction catalyzed by the ATP-generating PEP-carboxykinase (PCK) was enhanced. The specific activity of PCK was 19.33-fold higher in DC111 than that in AFP111, which made the strain have enough ATP to converse xylose to succinic acid.
Atmosphere
;
Escherichia coli
;
genetics
;
metabolism
;
Fermentation
;
Industrial Microbiology
;
Metabolic Engineering
;
Mutation
;
Plasma Gases
;
pharmacology
;
Succinic Acid
;
metabolism
;
Temperature
;
Xylose
;
metabolism
10.Effect of initial substrate concentrations and pH on hydrogen production from xylose with Clostridium butyricum T4.
Jie QIU ; Jifei XU ; Nanqi REN
Chinese Journal of Biotechnology 2009;25(6):887-891
We studied the effect of initial pH and substrate concentrations on the conversion of xylose to hydrogen by Clostridium butyrium T4 at pH 5.0-8.5 and substrate concentrations 5-40 g/L. The cumulative hydrogen volume and the specific hydrogen production rate increased and then decreased with increasing initial pH or substrate concentrations. At initial pH 6.5 and substrate concentration 20 g/L, the cumulative hydrogen production and the specific hydrogen production rate reached the maximum value of 4.26 L/L and 18.86 mmol-H2/h g-DCW (dry cell weight).
Clostridium butyricum
;
growth & development
;
metabolism
;
Culture Media
;
Fermentation
;
Hydrogen
;
analysis
;
metabolism
;
Hydrogen-Ion Concentration
;
Substrate Specificity
;
Xylose
;
metabolism