1.Identification of DNA methylation associated gene signatures in endometrial cancer via integrated analysis of DNA methylation and gene expression systematically.
Chuandi MEN ; Hongjuan CHAI ; Xumin SONG ; Yue LI ; Huawen DU ; Qing REN
Journal of Gynecologic Oncology 2017;28(6):e83-
OBJECTIVE: Endometrial cancer (EC) is a common gynecologic cancer worldwide. However, the pathogenesis of EC has not been epigenetically elucidated. Here, this study aims to describe the DNA methylation profile and identify favorable gene signatures highly associated with aberrant DNA methylation changes in EC. METHODS: The data regarding DNA methylation and gene expression were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially methylated CpG sites (DMCs), differentially methylated regions (DMRs), and differentially expressed genes (DEGs) were identified, and the relationship between the 2 omics was further analyzed. In addition, weighted CpG site co-methylation network (WCCN) was constructed followed by an integrated analysis of DNA methylation and gene expression data. RESULTS: Four hundred thirty-one tumor tissues and 46 tissues adjacent tumor of EC patients were analyzed. One thousand one hundred thirty-five DMCs (merging to 10 DMRs), and 1,488 DEGs were obtained between tumor and normal groups, respectively. One hundred forty-eight DMCs-DEGs correlated pairs and 13 regional DMCs-DEGs pairs were obtained. Interestingly, we found that some hub genes in 2 modules among 8 modules of WCCN analysis were down-regulated in tumor samples. Furthermore, protocadherins (PCDHs) clusters, DDP6, TNXB, and ZNF154 were identified as novel deregulated genes with altered methylation in EC. CONCLUSION: Based on the analysis of DNA methylation in a systematic view, the potential long-range epigenetic silencing (LRES) composed of PCDHs was reported in ECs for the first time. PCDHs clusters, DDP6, and TNXB were firstly found to be associated with tumorigenesis, and may be novel candidate biomarkers for EC.
Biomarkers
;
Carcinogenesis
;
DNA Methylation*
;
DNA*
;
Endometrial Neoplasms*
;
Epigenomics
;
Female
;
Gene Expression*
;
Genome
;
Humans
;
Methylation
2.Na2CO3-responsive Photosynthetic and ROS Scavenging Mechanisms in Chloroplasts of Alkaligrass Revealed by Phosphoproteomics
Suo JINWEI ; Zhang HENG ; Zhao QI ; Zhang NAN ; Zhang YONGXUE ; Li YING ; Song BAOHUA ; Yu JUANJUAN ; Cao JIANGUO ; Wang TAI ; Luo JI ; Guo LIHAI ; Ma JUN ; Zhang XUMIN ; She YIMIN ; Peng LIANWEI ; Ma WEIMIN ; Guo SIYI ; Miao YUCHEN ; Chen SIXUE ; Qin ZHI ; Dai SHAOJUN
Genomics, Proteomics & Bioinformatics 2020;18(3):271-288
Alkali-salinity exerts severe osmotic, ionic, and high-pH stresses to plants. To under-stand the alkali-salinity responsive mechanisms underlying photosynthetic modulation and reactive oxygen species (ROS) homeostasis, physiological and diverse quantitative proteomics analyses of alkaligrass (Puccinellia tenuiflora) under Na2CO3 stress were conducted. In addition, Western blot,real-time PCR, and transgenic techniques were applied to validate the proteomic results and test the functions of the Na2CO3-responsive proteins. A total of 104 and 102 Na2CO3-responsive proteins were identified in leaves and chloroplasts, respectively. In addition, 84 Na2CO3-responsive phospho-proteins were identified, including 56 new phosphorylation sites in 56 phosphoproteins from chloro-plasts, which are crucial for the regulation of photosynthesis, ion transport, signal transduction, and energy homeostasis. A full-length PtFBA encoding an alkaligrass chloroplastic fructose-bisphosphate aldolase (FBA) was overexpressed in wild-type cells of cyanobacterium Synechocystis sp. Strain PCC 6803, leading to enhanced Na2CO3 tolerance. All these results indicate that thermal dissipation, state transition, cyclic electron transport, photorespiration, repair of pho-tosystem (PS) Ⅱ, PSI activity, and ROS homeostasis were altered in response to Na2CO3 stress, which help to improve our understanding of the Na2CO3-responsive mechanisms in halophytes.