1.Applications and future trend of minimally invasive surgical robots in bariatric and metabolic surgery
Jiake LI ; Zheng LI ; Xulong SUN ; Liyong ZHU ; Shaihong ZHU
International Journal of Surgery 2021;48(5):334-339
The incidence of obesity is increasing in the world yearly, obesity and its complications pose a serious threat to the health of people at the same time. In recent years with the progress of economy, the development of science and technology and the change of concept, surgical robots are increasingly used in metabolic and bariatric surgery. In this review, the application and development trend of minimally invasive surgical robot in metabolic and bariatric surgery are reviewed, the advantages of surgical robot in metabolic and bariatric surgery are discussed, and the future development are prospected.
2.Strategies to choose scaffold materials for tissue engineering.
Qingdong GAO ; Xulong ZHU ; Junxi XIANG ; Yi LÜ ; Jianhui LI
Chinese Journal of Biotechnology 2016;32(2):172-184
Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which mixed with sustained-release nano-microsphere containing growth factors. What's more, the stent internal surface coated with glue/collagen matrix mixing layer containing bFGF and EGF so could supplying the early release of the two cytokines. Finally, combining the poly(L-lactic acid)/poly(ε-caprolactone) biliary stent with the induced cells was the last step for preparing tissue-engineered bile duct. This literature reviewed a variety of the existing tissue engineering scaffold materials and briefly introduced the impact factors on the characteristics of tissue engineering scaffold materials such as preparation procedure, surface modification of scaffold, and so on. We explored the choosing strategy of desired tissue engineering scaffold materials.
Glucosides
;
chemistry
;
Humans
;
Stents
;
Tissue Engineering
;
Tissue Scaffolds
;
chemistry
3.Repairing bile duct defects while preserving the sphincter of oddi
Xulong ZHU ; Tan YAN ; Yi LV ; Jianhui LI
Chinese Journal of Hepatobiliary Surgery 2014;20(1):74-78
In recent years,the incidence of iatrogenic bile duct injury has increased.The traditional treatment methods often cause severe complications,such as biliary-enteric anastomosis,which removes the sphincter of Oddi's function.With the development and potential translational use of engineered tissue,surgeons have focused on keeping normal physiological function after operations.In this manuscript,we review the strategy to repair bile duct defects without sacrificing the sphincter of Oddi' s function.This article may be referenced for clinical research.
4.Influence of vitamin D deficiency in bariatric surgery
Xulong SUN ; Liyong ZHU ; Pengzhou LI ; Xiangwu YANG ; Weizheng LI ; Shaihong ZHU
International Journal of Surgery 2017;44(5):344-349
Vitamin D plays an important role in cellular differentiation and Calcium phosphate metabolism.At the same time,the role of Vitamin D in glycolipid metabolism had attracted a lot of attention.Bariatric surgery is an effective treatment to achieve therapeutic endpoints for comorbidities associated with obesity,but vitamin D status is always insufficient before and after surgery.In this review,the author aim to (1) discuss the deficiency of vitamin D in bariatric patients,(2) to summarize the impact of vitamin D on glycolipid metabolism and the outcome of bariatric surgery,(3) to discuss the supplementation for the deficiency of vitamin D.
5.The enhancing effect of Angelica dahurica extracts on absorption of baicalin--the active composition of Scutellaria.
Jingyun ZHU ; Xinli LIANG ; Guangfa WANG ; Guowei ZHAO ; Zhenggen LIAO ; Yunchao CAO ; Xulong CHEN ; Ming YANG
Acta Pharmaceutica Sinica 2011;46(2):232-7
To explore the mechanism of the absorption enhancement of Angelica dahurica extract (Ade), the absorption mechanism of baicalin in the Scutcllaria water extraction as well as the effect of Angelica dahurica extract on absorption of baicalin were investigated. In order to determine the main absorption site, everted intestinal sac model was used to study the effect of Angelica dahurica extract on the absorption of baicalin at duodenum, jejunum, ileum and colon. In situ single pass intestinal perfusion model was performed to study the absorption of various concentrations of baicalin and the effect of Angelica dahurica extract on the absorption of baicalin at the main absorption site. To authenticate the consequence of perfusion by getting the blood from the hepatic portal vein and determine the concentration of the baicalin in the blood. The result showed that baicalin could be absorbed at all of the four intestinal segments with increasing absorption amount per unit as follows: ileum > colon > jejunum > duodenum. The absorption ofbaicalin in the duodenum significantly increased with Angelica dahurica extract, thus, duodenum was chosen to be the studying site. Apparent permeability values (Papp) and absorption rate constant (Ka) of baicalin in the duodenum increased gradually with higher concentrations. When the concentration of baicalin rises to a certain degree, the absorption increase had a saturable process, the absorption of baicalin may be an active transportation. Baicalin may be not a substrate of P-gp as verapamil which had not significantly affected the Papp and Ka of baicalin. The absorption of baicalin in the duodenum significantly increased (P < 0.01) in the two models with Angelica dahurica extract and the concentration of baicalin in the blood from the hepatic portal vein showed that the Angelica dahurica extract can increase the absorption of baicalin.
6.Pharmaceutical Care for Infant Patient with Rhodococcus equi Infection
Huafeng ZHANG ; Guiqing PENG ; Yuhua ZHU ; Jing XU ; Shaolin YANG ; Xulong CHEN
Herald of Medicine 2018;37(1):48-50
Objective To provide reference for drug use in infant patients with Rhodococcus equi(R.equi) infection. Methods By participating in drug therapy for an infant patient with Rhodococcus equi infection,clinical pharmacist assisted physicians to develop treatment plan and provide reasonable pharmaceutical care. Results Therapeutic selection was improved through pharmaceutical care process. Conclusion Participation of clinical pharmacist can fully play their advantages in the field of drug efficacy,and improve the level of clinical treatment.
7.Correlation between changes of body fat distribution and insulin resistance after Roux-en-Y gastric bypass
Rao LI ; Liyong ZHU ; Pengzhou LI ; Xiangwu YANG ; Weizheng LI ; Guangnian JI ; Xulong SUN ; Xianjie QIU ; Shaihong ZHU
International Journal of Surgery 2018;45(4):228-233
Objective To investigate the effect of laparoscopic Roux-en-Y gastric bypass(LYGB) on body fat distribution,and relationship between the changes of body fat distribution and improvement of insulin resistance.Methods A total of 65 patients with type 2 diabetes who underwent LYGB were selected for a retrospective analysis.Metabolic parameters,anthropometric measurements,body composition and fat distribution measured by dual-energy X-ray absorptiometry (DEXA) were collected separately before and 6 months post LYGB.All data of pre-and postoperation were compared with pair t test,Pearson correlation analysis was used to evaluate correlation of two variables.Results Weight,body mass index,waist circumference,waist-to-hip ratio,triglyceride,fasting plasma glucose,fasting insulin and homeostatic model assessment for insulin resistance (HOMA-IR) were significantly decreased in 6 months after surgery (P < 0.05).Total fat mass,body fat mass of trunk,upper and lower limbs decreased significantly (P <0.05).Percent fat mass at the whole body,Android region,upper and lower limbs decreased significantly (P <0.05).After 6 months postoperatively,abdominal obesity indices waist circumfernce decreased from (98.10±13.03) cm to (91.60±7.68) cm (P<0.01) and percent fat mass at the Android region decreased from (35.71 ±10.24)% to (29.44 ± 12.11) % (P<0.05),HOMA-IR decreased from 3.62 ± 5.18 to 1.79 ± 1.52 (P < 0.05).The improvement of postoperative insulin resistance is positively correlated with the changes in waist circumference (P <0.01) and percent fat mass of Android region (P <0.05).Conclusions The body fat distribution changes after LYGB,change of abdominal fat distribution is positively correlated to the improvement of insulin resistance.
8.Effects of bariatric metabolic surgery on body composition
Beibei CUI ; Liyong ZHU ; Pengzhou LI ; Weizheng LI ; Guohui WANG ; Xulong SUN ; Guangnian JI ; Zhaomei YU ; Haibo TANG ; Xianhao YI ; Jiapu LING ; Shaihong ZHU
Chinese Journal of Digestive Surgery 2020;19(11):1173-1182
Objective:To explore the effects of bariatric metabolic surgery on body composition.Methods:The retrospective cohort study was conducted. The clinicopathological data of 66 patients with metabolic diseases who were admitted to the Third Xiangya Hospital of Central South University from January 2013 to December 2014 were collected. There were 42 males and 24 females, aged (40±11)years, with a range from 17 to 63 years. Of the 66 patients, 27 undergoing laparoscopic sleeve gastrectomy (LSG) and 39 undergoing laparoscopic Roux-en-Y gastric bypass (LRYGB) were allocated into LSG group and LRYGB group, respectively. The body composition of all patients was determined by dual-energy X-ray absorptiometry at preoperation and postoperative 6 months. Observation indicators: (1) the changes of anthropometric parameters, glucolipid metabolism, body fat mass percentage (BF%) and the ratio of Android BF% and Gynoid BF% (A/G ratio) from preoperation to postoperative 6 months; (2) the changes of whole and local body composition from preoperation to postoperative 6 months; (3) analysis of the correlation between BF% and anthropometric parameters, glucolipid metabolism. (4) Follow-up. Follow-up was conducted using outpatient or hospitalization examination to detect the changes of body composition at the time of postoperative 6 month. The follow-up time was up to July 2015. Measurement data with normal distribution were represented as Mean± SD, paired-samples t test was used for intra-group comparison, and independent-samples t test when baseline data were consistency or covariance analysis when baseline data were not consistency was used for inter-group comparison. Measurement data with skewed distribution were represented as M ( P25, P75), and comparison between groups was analyzed using Wilcoxon signed rank test. The correlation test was undertaken with the Pearson bivariate analysis. Results:(1) The changes of anthropometric parameters, glucolipid metabolism, BF% and A/G ratio from preoperation to postoperative 6 months: for patients in the LSG group, the body mass, body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), diastolic blood pressure (DBP), systolic blood pressure (SBP), fasting plasma glucose (FPG), HbA1c, high density lipoprotein cholesterol (HDL-C), triglyceride (TG), whole BF%, arms BF%, legs BF%, trunk BF%, Android BF%, Gynoid BF% and A/G ratio at preoperation and postoperative 6 months were (102±17)kg, (37±5)kg/m 2, (118±14)cm, 1.01±0.06, (94±14)mmHg(1 mmHg=0.133 kPa), (137±15)mmHg, (8.1±4.2)mmol/L, 7.3%±2.4%, (1.11±0.26)mmol/L, 2.14 mmol/L(1.73 mmol/L, 2.59 mmol/L), 40%±6%, 46%±10%, 36%±8%, 42%±6%, 45%±6%, 37%±7%, 1.23±0.18 and (82±15)kg, (29±4)kg/m 2, (101±13)cm, 0.95±0.08, (76±10)mmHg, (118±16)mmHg, (7.2±1.2)mmol/L, 5.4%±0.8%, (1.26±0.32)mmol/L, 1.21 mmol/L(0.88 mmol/L, 1.55 mmol/L), 36%±8%, 41%±9%, 34%±10%, 38%±8%, 41%±8%, 35%±10%, 1.20±0.17, respectively. There was no significant difference in the intra-group comparison of the Gynoid BF% and A/G ratio ( t=1.903, 1.730, P>0.05) and there were significant differences in the intra-group comparison of the rest of above indicators ( t=12.748, 13.283, 9.013, 3.804, 6.031, 6.226, 2.393, 4.287, -2.900, 3.193, 2.932, 5.198, 2.167, 3.357, 3.116, P<0.05). For patients in the LRYGB group, the body mass, BMI, WC, WHR, DBP, SBP, FPG, HbA1c, HDL-C, TG, whole BF%, arms BF%, legs BF%, trunk BF%, Android BF%, Gynoid BF% and A/G ratio at preoperation and postoperative 6 months were (80±12)kg, (28±4)kg/m 2, (98±9)cm, 0.96±0.05, (85±10)mmHg, (134±17)mmHg, (8.6±2.8)mmol/L, 8.3%±1.7%, (1.13±0.26)mmol/L, 2.06 mmol/L(1.15 mmol/L, 3.30 mmol/L), 30%±8%, 29%±11%, 23%±9%, 37%±7%, 40%±7%, 29%±8%, 1.42±0.26 and (69±9)kg, (24±3)kg/m 2, (91±8)cm, 0.93±0.05, (80±9)mmHg, (129±18)mmHg, (7.4±1.8)mmol/L, 7.0%±1.5%, (1.18±0.29)mmol/L, 1.29 mmol/L(0.85 mmol/L, 2.02 mmol/L), 25%±8%, 23%±12%, 20%±9%, 29%±9%, 32%±10%, 25%±9%, 1.29±0.25, respectively. There was no significant difference in the intra-group comparison of the SBP and HDL-C ( t=1.733, -1.073, P>0.05) and there were significant differences in the intra-group comparison of the rest of above indicators ( t=10.525, 10.200, 7.129, 2.887, 2.805, 2.517, 3.699, 2.608, 7.997, 8.018, 6.029, 8.342, 8.069, 5.813, 6.391, P<0.05). There were significant differences in DBP, SBP, HbA1c, trunk BF%, Android BF% and A/G ratio at postoperative 6 months between LSG group and LRYGB group ( F=6.408, t=2.641, F=20.673, 5.140, 5.735, 4.714, P<0.05). (2) The changes of whole and local body composition from preoperation to postoperative 6 months: for patients in the LSG group, the whole fat mass, muscle mass, fat-free mass at preoperation and postoperative 6 months were (38.74±9.68)kg, (57.71±11.62)kg, (60.14±11.95)kg and (26.64±8.29)kg, (48.65±13.80)kg, (51.00±14.27)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=5.256, 5.413, 5.315, P<0.05); the arms fat mass, muscle mass, fat-free mass were (5.19±1.67)kg, (5.78±1.58)kg, (6.10±1.64)kg and (3.73±1.19)kg, (5.10±1.53)kg, (5.43±1.57)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=7.564, 5.405, 5.363, P<0.05); the legs muscle mass and fat-free mass were (19.05±4.19)kg, (19.93±4.35)kg and (15.93±4.71)kg, (16.81±4.87)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=5.623, 5.568, P<0.05); the trunk fat mass and fat-free mass were (21.93±4.90)kg, (29.7±5.94)kg and (14.69±4.79)kg, (24.78±7.02)kg respectively, showing significant differences in the intra-group comparison of the above indicators ( t=8.903, 5.421, P<0.05); the Android fat mass and fat-free mass were (4.16±1.19)kg, (5.01±1.12)kg and (2.57±0.90)kg, (3.83±1.20)kg respectively, showing significant differences in the intra-group comparison of the above indicators ( t=8.288, 7.637, P<0.05); the Gynoid fat mass and fat-free mass were (5.51±1.42)kg, (9.27±1.86)kg and (3.85±1.16)kg, (7.65±2.31)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=7.461, 5.672, P<0.05); the skeletal muscle index were (8.86±1.38)kg/m 2 and (7.49±1.71)kg/m 2, respectively, showing a significant differences in the intra-group comparison ( t=5.724, P<0.05). For patients in the LRYGB group, the whole fat mass, muscle mass, bone mineral content, fat-free mass at preoperation and postoperative 6 months were (23.58±7.80)kg, (51.76±8.35)kg, (2.55±0.48)kg, (54.31±8.63)kg and (16.88±6.86)kg, (49.41±7.70)kg, (2.47±0.50)kg, (51.88±8.05)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=9.001, 3.974, 4.354, 4.075, P<0.05); the arms fat mass were (2.72±2.37)kg and (1.73±1.02)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=3.470, P<0.05); the legs fat mass, muscle mass, fat-free mass were (5.21±2.46)kg, (16.68±3.50)kg, (17.60±3.66)kg and (4.01±2.12)kg, (15.63±2.90)kg, (16.54±3.05)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=6.592, 3.372, 3.319, P<0.05); the trunk fat mass were (14.87±4.11)kg and (10.38±4.00)kg, respectively, showing a significant difference in the intra-group comparison of the above indicators ( t=8.431, P<0.05); the Android fat mass and fat-free mass were (2.61±0.86)kg, (3.96±0.87)kg and (1.81±0.79)kg, (3.78±0.67)kg respectively, showing significant differences in the intra-group comparison of the above indicators ( t=8.032, 2.153, P<0.05); the Gynoid fat mass and fat-free mass were (3.14±1.17)kg, (7.89±1.58)kg and (2.44±0.96)kg, (7.43±1.26)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=6.112, 3.207, P<0.05); the skeletal muscle index were (8.04±1.22)kg/m 2 and (7.43±1.13)kg/m 2, respectively, showing significant differences in the intra-group comparison ( t=4.953, P<0.05). There were significant differences in whole muscle mass, whole fat-free mass, arms fat mass, legs muscle mass, legs fat-free mass, trunk fat-free mass, Android fat-free mass, Gynoid fat-free mass and skeletal muscle index at postoperative 6 months between LSG group and LRYGB group ( F=13.846, 13.614, 23.696, 7.100, 7.127, 15.243, 16.921, 8.625, 5.497, P<0.05). (3) Analysis of the correlation between BF% and anthropometric parameters, glucolipid metabolism: the whole BF% of 66 patients was positively correlated with body mass, BMI, WC and WHR ( r=0.405, 0.663, 0.625, 0.331, P<0.05); the arms BF% was positively correlated with body mass, BMI, WC and WHR ( r=0.432, 0.682, 0.639, 0.309, P<0.05); the legs BF% was positively correlated with body mass, BMI and WC ( r=0.366, 0.646, 0.564, P<0.05); the trunk BF% was positively correlated with body mass, BMI, WC and WHR ( r=0.332, 0.560, 0.554, 0.335, P<0.05); the Android BF% was positively correlated with body mass, BMI, WC and WHR ( r=0.327, 0.537, 0.543, 0.336, P<0.05); the Gynoid BF% was positively correlated with BMI and WC ( r=0.561, 0.488, P<0.05), and negatively correlated with FPG ( r=-0.491, P<0.05); the A/G ratio was negatively correlated with BMI ( r=-0.334, P<0.05), and positively correlated with FPG ( r=0.506, P<0.05); the skeletal muscle index was positively correlated with body mass, BMI, WC and WHR ( r=0.757, 0.641, 0.609, 0.519, P<0.05), and negatively correlated with HDL-C ( r=-0.369, P<0.05). (4) Follow-up: 66 patients were followed up at the time of postoperative 6 month. Conclusions:Both LSG and LRYGB significantly change body composition. LRYGB is superior to LSG in reducing trunk BF% and Android BF%. The effects of the two surgical methods on fat mass and bone mineral content are similar. LSG lead to a more significant decrease in whole muscle mass, and LRYGB lead to a more significant decrease in legs muscle mass and skeletal muscle index.
9.Optimization of the protocols for in vitro culture and induction of hepatic differentiation of rat mesenchymal stem cells.
Junxi XIANG ; Xinglong ZHENG ; Xulong ZHU ; Lifei YANG ; Rui GAO ; Jianhui LI ; Xuemin LIU ; Yi LV
Journal of Southern Medical University 2015;35(8):1090-1096
OBJECTIVETo optimize the protocols for isolation, in vitro culture, identification and induction of hepatic differentiation of rat bone marrow mesenchymal stem cells (BMSCs).
METHODSRat BMSCs were separated and purified by differential adherent culture for 1.5 h with the first medium change at 12 h. The surface markers of BMSCs were detected by flow cytometry. The cells were induced to differentiate into adipogenic, osteogenic, and chondrogenesis lineages. A 3-step protocol including sequential addition of growth factors, cytokines and hormones was used to induce the BMSCs to differentiate into hepatocyte-like cells.
RESULTSThe cells isolated using this protocol were positive for CD29, CD44, and CD90 and negative for CD29 and CD45. The adipogenic, osteogenic, and chondrogenic differentiation of the BMSCs were verified by Oil red, Alizarin red, and toluidine blue staining. The BMSCs induced with the 3-step protocol differentiated into hepatic-like cells that expressed hepatocyte-specific proteins (ALB and AFP) and genes.
CONCLUSIONThe optimized protocol allows simple and efficient isolation of highly purified populations of BMSCs, which can be induced into hepatic lineages in specific microenvironment.
Animals ; Cell Culture Techniques ; Cell Differentiation ; Flow Cytometry ; Hepatocytes ; cytology ; Mesenchymal Stromal Cells ; cytology ; Rats
10.Optimization of the method for isolating and culturing rat mesenchymal stem cells.
Xulong ZHU ; Tan YAN ; Weijie YAO ; Yongheng WANG ; Chong CHENG ; Junxi XIANG ; Yi LV ; Qingdong GAO ; Jianhui LI
Journal of Southern Medical University 2014;34(11):1621-1631
OBJECTIVETo optimize the protocols for isolation and culture of mesenchymal stem cells from rat bone marrow (BMSCs).
METHODSBMSCs were isolated by adherence to plastic with frequent medium change and reduced trypsinization time. The cell growth curves were drawn and the surface markers of BMSCs were detected by flow cytometry. The cells were induced to differentiate into osteogenic, adipogenic, hepatic and cholic lineages.
RESULTSThe cells isolated using this method were positive for CD29, CD44, and CD90 and negative for the hematopoietic surface markers CD45. The osteogenic and adipogenic differentiation of the BMSCs was verified by alkaline phosphatase staining, Alizarin red staining and Oil red staining. The cell subcultures up to passage 10 maintained capacities of differentiation into osteogenic and adipogenic lineages. The BMSCs induced with sequential addition of growth factors, cytokines and hormones differentiated into cells expressing hepatocyte- and cholangiocyte-specific markers.
CONCLUSIONThe optimized method allows efficient isolation of homogenous populations of MSCs from rat bone marrow, which can be induced into multiple cell lineages.
Animals ; Cell Culture Techniques ; Cell Differentiation ; Cell Proliferation ; Cell Separation ; Flow Cytometry ; Mesenchymal Stromal Cells ; cytology ; Rats