1.Assessment of Left Ventricular Systolic function in Elderly Isolated Systolic Hypertension
Gang SUN ; Yanfeng ZHENG ; Haibo REN ; Xulong YAN ; Meiyun FENG
Chinese Journal of Hypertension 2001;9(2):96-97
Aim To explore the hemodynamic change of elderly isolated hypertension(EISH). Methods Color doppler ultrasonography were applied to examine thirty EISH patients and twenty eight elderly healthy subjects. The left ventricular systolic function as well as hemodynamic parameters were measured. Results The indices of left ventricular systolic function in EISH group such as SV,CO,EF and CI were obviously higher than those of control group(P<0.05),Linear relevant analysis show that pulse pressure was remarkable related to SV,CO,EF and CI in EISH group,with r value 0.43,0.56,0.46,0.45 respectively.Conclusion EISH patients apparently had ventricular systolic dysfunction and hemodynamic abnormality. Pulse pressure may be associated with development of sysytolic dysfunction.
2.Applications and future trend of minimally invasive surgical robots in bariatric and metabolic surgery
Jiake LI ; Zheng LI ; Xulong SUN ; Liyong ZHU ; Shaihong ZHU
International Journal of Surgery 2021;48(5):334-339
The incidence of obesity is increasing in the world yearly, obesity and its complications pose a serious threat to the health of people at the same time. In recent years with the progress of economy, the development of science and technology and the change of concept, surgical robots are increasingly used in metabolic and bariatric surgery. In this review, the application and development trend of minimally invasive surgical robot in metabolic and bariatric surgery are reviewed, the advantages of surgical robot in metabolic and bariatric surgery are discussed, and the future development are prospected.
3.Influence of vitamin D deficiency in bariatric surgery
Xulong SUN ; Liyong ZHU ; Pengzhou LI ; Xiangwu YANG ; Weizheng LI ; Shaihong ZHU
International Journal of Surgery 2017;44(5):344-349
Vitamin D plays an important role in cellular differentiation and Calcium phosphate metabolism.At the same time,the role of Vitamin D in glycolipid metabolism had attracted a lot of attention.Bariatric surgery is an effective treatment to achieve therapeutic endpoints for comorbidities associated with obesity,but vitamin D status is always insufficient before and after surgery.In this review,the author aim to (1) discuss the deficiency of vitamin D in bariatric patients,(2) to summarize the impact of vitamin D on glycolipid metabolism and the outcome of bariatric surgery,(3) to discuss the supplementation for the deficiency of vitamin D.
4.Bioinformatics analysis of angiogenesis-related miRNAs in endothelial progenitor cell exosomes
Wu XIONG ; Anmeng SUN ; Yi HUANG ; Wenjuan QUAN ; Fengjiao YOU ; Xulong YANG ; Hongwei LAN ; Honghui SU ; Jianda ZHOU
Journal of Chinese Physician 2019;21(4):499-502
Objective By taking usage of bioinformatics screening methods,this medical research aimed at exploring how the miRNAs in endothelial progenitor cell exosomes relate to the regulation of angiogenesis.Methods miRNAs in endothelial progenitor cells exosomes and angiogenesis-related miRNA was intersected from the existing database to obtain the candidates of miRNA molecules related to angiogenesis in endothelial progenitor exosomes.Results 160 and 50 miRNAs in endothelial progenitor cell candidates were obtained through experimental data analysis and literature searching respectively.600 candidates of angiogenesis-related miRNAs were obtained through literature searching;the top 20 with the highest frequency were selected out.Finally,9 miRNA candidates (miR-126,miR-21,miR-221,miR-92a,miR-199a,miR-210,miR-214,miR-155,miR-146a) that may be highly expressed in endothelial progenitor exosomes and associated with angiogenesis were obtained for the following research.Conclusions Based on data analysis and literature searching,bioinformatics could screen out the target miRNAs for follow-up studies easily and reliably,it is worthy to be widely applied and popularized.
5.Effects of bariatric metabolic surgery on body composition
Beibei CUI ; Liyong ZHU ; Pengzhou LI ; Weizheng LI ; Guohui WANG ; Xulong SUN ; Guangnian JI ; Zhaomei YU ; Haibo TANG ; Xianhao YI ; Jiapu LING ; Shaihong ZHU
Chinese Journal of Digestive Surgery 2020;19(11):1173-1182
Objective:To explore the effects of bariatric metabolic surgery on body composition.Methods:The retrospective cohort study was conducted. The clinicopathological data of 66 patients with metabolic diseases who were admitted to the Third Xiangya Hospital of Central South University from January 2013 to December 2014 were collected. There were 42 males and 24 females, aged (40±11)years, with a range from 17 to 63 years. Of the 66 patients, 27 undergoing laparoscopic sleeve gastrectomy (LSG) and 39 undergoing laparoscopic Roux-en-Y gastric bypass (LRYGB) were allocated into LSG group and LRYGB group, respectively. The body composition of all patients was determined by dual-energy X-ray absorptiometry at preoperation and postoperative 6 months. Observation indicators: (1) the changes of anthropometric parameters, glucolipid metabolism, body fat mass percentage (BF%) and the ratio of Android BF% and Gynoid BF% (A/G ratio) from preoperation to postoperative 6 months; (2) the changes of whole and local body composition from preoperation to postoperative 6 months; (3) analysis of the correlation between BF% and anthropometric parameters, glucolipid metabolism. (4) Follow-up. Follow-up was conducted using outpatient or hospitalization examination to detect the changes of body composition at the time of postoperative 6 month. The follow-up time was up to July 2015. Measurement data with normal distribution were represented as Mean± SD, paired-samples t test was used for intra-group comparison, and independent-samples t test when baseline data were consistency or covariance analysis when baseline data were not consistency was used for inter-group comparison. Measurement data with skewed distribution were represented as M ( P25, P75), and comparison between groups was analyzed using Wilcoxon signed rank test. The correlation test was undertaken with the Pearson bivariate analysis. Results:(1) The changes of anthropometric parameters, glucolipid metabolism, BF% and A/G ratio from preoperation to postoperative 6 months: for patients in the LSG group, the body mass, body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHR), diastolic blood pressure (DBP), systolic blood pressure (SBP), fasting plasma glucose (FPG), HbA1c, high density lipoprotein cholesterol (HDL-C), triglyceride (TG), whole BF%, arms BF%, legs BF%, trunk BF%, Android BF%, Gynoid BF% and A/G ratio at preoperation and postoperative 6 months were (102±17)kg, (37±5)kg/m 2, (118±14)cm, 1.01±0.06, (94±14)mmHg(1 mmHg=0.133 kPa), (137±15)mmHg, (8.1±4.2)mmol/L, 7.3%±2.4%, (1.11±0.26)mmol/L, 2.14 mmol/L(1.73 mmol/L, 2.59 mmol/L), 40%±6%, 46%±10%, 36%±8%, 42%±6%, 45%±6%, 37%±7%, 1.23±0.18 and (82±15)kg, (29±4)kg/m 2, (101±13)cm, 0.95±0.08, (76±10)mmHg, (118±16)mmHg, (7.2±1.2)mmol/L, 5.4%±0.8%, (1.26±0.32)mmol/L, 1.21 mmol/L(0.88 mmol/L, 1.55 mmol/L), 36%±8%, 41%±9%, 34%±10%, 38%±8%, 41%±8%, 35%±10%, 1.20±0.17, respectively. There was no significant difference in the intra-group comparison of the Gynoid BF% and A/G ratio ( t=1.903, 1.730, P>0.05) and there were significant differences in the intra-group comparison of the rest of above indicators ( t=12.748, 13.283, 9.013, 3.804, 6.031, 6.226, 2.393, 4.287, -2.900, 3.193, 2.932, 5.198, 2.167, 3.357, 3.116, P<0.05). For patients in the LRYGB group, the body mass, BMI, WC, WHR, DBP, SBP, FPG, HbA1c, HDL-C, TG, whole BF%, arms BF%, legs BF%, trunk BF%, Android BF%, Gynoid BF% and A/G ratio at preoperation and postoperative 6 months were (80±12)kg, (28±4)kg/m 2, (98±9)cm, 0.96±0.05, (85±10)mmHg, (134±17)mmHg, (8.6±2.8)mmol/L, 8.3%±1.7%, (1.13±0.26)mmol/L, 2.06 mmol/L(1.15 mmol/L, 3.30 mmol/L), 30%±8%, 29%±11%, 23%±9%, 37%±7%, 40%±7%, 29%±8%, 1.42±0.26 and (69±9)kg, (24±3)kg/m 2, (91±8)cm, 0.93±0.05, (80±9)mmHg, (129±18)mmHg, (7.4±1.8)mmol/L, 7.0%±1.5%, (1.18±0.29)mmol/L, 1.29 mmol/L(0.85 mmol/L, 2.02 mmol/L), 25%±8%, 23%±12%, 20%±9%, 29%±9%, 32%±10%, 25%±9%, 1.29±0.25, respectively. There was no significant difference in the intra-group comparison of the SBP and HDL-C ( t=1.733, -1.073, P>0.05) and there were significant differences in the intra-group comparison of the rest of above indicators ( t=10.525, 10.200, 7.129, 2.887, 2.805, 2.517, 3.699, 2.608, 7.997, 8.018, 6.029, 8.342, 8.069, 5.813, 6.391, P<0.05). There were significant differences in DBP, SBP, HbA1c, trunk BF%, Android BF% and A/G ratio at postoperative 6 months between LSG group and LRYGB group ( F=6.408, t=2.641, F=20.673, 5.140, 5.735, 4.714, P<0.05). (2) The changes of whole and local body composition from preoperation to postoperative 6 months: for patients in the LSG group, the whole fat mass, muscle mass, fat-free mass at preoperation and postoperative 6 months were (38.74±9.68)kg, (57.71±11.62)kg, (60.14±11.95)kg and (26.64±8.29)kg, (48.65±13.80)kg, (51.00±14.27)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=5.256, 5.413, 5.315, P<0.05); the arms fat mass, muscle mass, fat-free mass were (5.19±1.67)kg, (5.78±1.58)kg, (6.10±1.64)kg and (3.73±1.19)kg, (5.10±1.53)kg, (5.43±1.57)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=7.564, 5.405, 5.363, P<0.05); the legs muscle mass and fat-free mass were (19.05±4.19)kg, (19.93±4.35)kg and (15.93±4.71)kg, (16.81±4.87)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=5.623, 5.568, P<0.05); the trunk fat mass and fat-free mass were (21.93±4.90)kg, (29.7±5.94)kg and (14.69±4.79)kg, (24.78±7.02)kg respectively, showing significant differences in the intra-group comparison of the above indicators ( t=8.903, 5.421, P<0.05); the Android fat mass and fat-free mass were (4.16±1.19)kg, (5.01±1.12)kg and (2.57±0.90)kg, (3.83±1.20)kg respectively, showing significant differences in the intra-group comparison of the above indicators ( t=8.288, 7.637, P<0.05); the Gynoid fat mass and fat-free mass were (5.51±1.42)kg, (9.27±1.86)kg and (3.85±1.16)kg, (7.65±2.31)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=7.461, 5.672, P<0.05); the skeletal muscle index were (8.86±1.38)kg/m 2 and (7.49±1.71)kg/m 2, respectively, showing a significant differences in the intra-group comparison ( t=5.724, P<0.05). For patients in the LRYGB group, the whole fat mass, muscle mass, bone mineral content, fat-free mass at preoperation and postoperative 6 months were (23.58±7.80)kg, (51.76±8.35)kg, (2.55±0.48)kg, (54.31±8.63)kg and (16.88±6.86)kg, (49.41±7.70)kg, (2.47±0.50)kg, (51.88±8.05)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=9.001, 3.974, 4.354, 4.075, P<0.05); the arms fat mass were (2.72±2.37)kg and (1.73±1.02)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=3.470, P<0.05); the legs fat mass, muscle mass, fat-free mass were (5.21±2.46)kg, (16.68±3.50)kg, (17.60±3.66)kg and (4.01±2.12)kg, (15.63±2.90)kg, (16.54±3.05)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=6.592, 3.372, 3.319, P<0.05); the trunk fat mass were (14.87±4.11)kg and (10.38±4.00)kg, respectively, showing a significant difference in the intra-group comparison of the above indicators ( t=8.431, P<0.05); the Android fat mass and fat-free mass were (2.61±0.86)kg, (3.96±0.87)kg and (1.81±0.79)kg, (3.78±0.67)kg respectively, showing significant differences in the intra-group comparison of the above indicators ( t=8.032, 2.153, P<0.05); the Gynoid fat mass and fat-free mass were (3.14±1.17)kg, (7.89±1.58)kg and (2.44±0.96)kg, (7.43±1.26)kg, respectively, showing significant differences in the intra-group comparison of the above indicators ( t=6.112, 3.207, P<0.05); the skeletal muscle index were (8.04±1.22)kg/m 2 and (7.43±1.13)kg/m 2, respectively, showing significant differences in the intra-group comparison ( t=4.953, P<0.05). There were significant differences in whole muscle mass, whole fat-free mass, arms fat mass, legs muscle mass, legs fat-free mass, trunk fat-free mass, Android fat-free mass, Gynoid fat-free mass and skeletal muscle index at postoperative 6 months between LSG group and LRYGB group ( F=13.846, 13.614, 23.696, 7.100, 7.127, 15.243, 16.921, 8.625, 5.497, P<0.05). (3) Analysis of the correlation between BF% and anthropometric parameters, glucolipid metabolism: the whole BF% of 66 patients was positively correlated with body mass, BMI, WC and WHR ( r=0.405, 0.663, 0.625, 0.331, P<0.05); the arms BF% was positively correlated with body mass, BMI, WC and WHR ( r=0.432, 0.682, 0.639, 0.309, P<0.05); the legs BF% was positively correlated with body mass, BMI and WC ( r=0.366, 0.646, 0.564, P<0.05); the trunk BF% was positively correlated with body mass, BMI, WC and WHR ( r=0.332, 0.560, 0.554, 0.335, P<0.05); the Android BF% was positively correlated with body mass, BMI, WC and WHR ( r=0.327, 0.537, 0.543, 0.336, P<0.05); the Gynoid BF% was positively correlated with BMI and WC ( r=0.561, 0.488, P<0.05), and negatively correlated with FPG ( r=-0.491, P<0.05); the A/G ratio was negatively correlated with BMI ( r=-0.334, P<0.05), and positively correlated with FPG ( r=0.506, P<0.05); the skeletal muscle index was positively correlated with body mass, BMI, WC and WHR ( r=0.757, 0.641, 0.609, 0.519, P<0.05), and negatively correlated with HDL-C ( r=-0.369, P<0.05). (4) Follow-up: 66 patients were followed up at the time of postoperative 6 month. Conclusions:Both LSG and LRYGB significantly change body composition. LRYGB is superior to LSG in reducing trunk BF% and Android BF%. The effects of the two surgical methods on fat mass and bone mineral content are similar. LSG lead to a more significant decrease in whole muscle mass, and LRYGB lead to a more significant decrease in legs muscle mass and skeletal muscle index.
6.Correlation between changes of body fat distribution and insulin resistance after Roux-en-Y gastric bypass
Rao LI ; Liyong ZHU ; Pengzhou LI ; Xiangwu YANG ; Weizheng LI ; Guangnian JI ; Xulong SUN ; Xianjie QIU ; Shaihong ZHU
International Journal of Surgery 2018;45(4):228-233
Objective To investigate the effect of laparoscopic Roux-en-Y gastric bypass(LYGB) on body fat distribution,and relationship between the changes of body fat distribution and improvement of insulin resistance.Methods A total of 65 patients with type 2 diabetes who underwent LYGB were selected for a retrospective analysis.Metabolic parameters,anthropometric measurements,body composition and fat distribution measured by dual-energy X-ray absorptiometry (DEXA) were collected separately before and 6 months post LYGB.All data of pre-and postoperation were compared with pair t test,Pearson correlation analysis was used to evaluate correlation of two variables.Results Weight,body mass index,waist circumference,waist-to-hip ratio,triglyceride,fasting plasma glucose,fasting insulin and homeostatic model assessment for insulin resistance (HOMA-IR) were significantly decreased in 6 months after surgery (P < 0.05).Total fat mass,body fat mass of trunk,upper and lower limbs decreased significantly (P <0.05).Percent fat mass at the whole body,Android region,upper and lower limbs decreased significantly (P <0.05).After 6 months postoperatively,abdominal obesity indices waist circumfernce decreased from (98.10±13.03) cm to (91.60±7.68) cm (P<0.01) and percent fat mass at the Android region decreased from (35.71 ±10.24)% to (29.44 ± 12.11) % (P<0.05),HOMA-IR decreased from 3.62 ± 5.18 to 1.79 ± 1.52 (P < 0.05).The improvement of postoperative insulin resistance is positively correlated with the changes in waist circumference (P <0.01) and percent fat mass of Android region (P <0.05).Conclusions The body fat distribution changes after LYGB,change of abdominal fat distribution is positively correlated to the improvement of insulin resistance.
7.Study on berberine regulating relationship between UCP2 and mitochondrial dynamics in skeletal muscle and kidney of mice with ischemia-reperfusion
Yongchun ZHANG ; Lin SUN ; Kai XU ; Xulong CHEN ; Hao LI ; Yongchuang ZHANG ; Qingtao YANG
Chongqing Medicine 2024;53(15):2254-2260
Objective To investigate the effects of berberine on UCP2 expression and the mitochondrial dy-namics in skeletal muscle and kidney in mice with ischemia reperfusion injury (IRI) of lower limb.Methods Thirty male Kunming mice were randomly divided into the negative control group,the positive control group,and low,medium and high doses berberine intervention groups.The mice in all experimental groups constructed the ischemia reperfusion injury model of lower limbs by tourniquet,different doses of berberine solution were injected intraperitoneally for intervention,while the ischemia repeating supply group used normal saline for re-placement.The HE staining was used to detect the pathological conditions of skeletal muscle and kidney,PCR and Western blot were used to detect the gene and protein expression levels of UCP2,FIS1,DRP1,Mfn1 and Mfn2,and the changes of SOD,MDA and GSH were detected by kit.Results After IRI intervention in the both lower extremities,the inflammatory cell infiltration occurred in both skeletal muscle and kidney,and the cell structure of skeletal muscle showed the damage changes.Meanwhile,the gene and protein expressions lev-els of UCP2,FIS1 and DRP1 and the levels of GSH and SOD in skeletal muscle were significantly increased (P<0.05),while the gene and protein expression levels of Mfn1 and Mfn2 and the levels of MDA were signif-icantly decreased (P<0.05).The increase of UCP2 and DRP1 gene and protein expression levels in kidney was different (P<0.05).Berberine could up-regulate the UCP2 gene expression in skeletal muscle and the pro-tein expression in skeletal muscle (P<0.05).At the same time,DRP1 gene and protein were significantly inhibited in the kidney tissue (P<0.05),but which in skeletal muscle had no significant change.Conclusion IRI of skeletal muscle of lower extremity in mice leads to severe oxidative stress injury,mitochondrial dynamic imbalance and inflammatory damage of kidney in the injured parts.The therapeutic effect of berberine on skeletal muscle and kidney IRI may be achieved by inhibiting oxidative stress injury,in which its protective effect on kidney may also be related to inhibit the expression of DRP1 after UCP2 up-regulation,thus limit the mitochondrial fission and slow down the development of injury.
8.Advances in organoids of the digestive system.
Hongyuan LIU ; Ruofan WANG ; Xulong LI ; Zhengyang WU ; Jinli SUN ; Weiyi LU ; Xianli WANG
Chinese Journal of Biotechnology 2023;39(4):1332-1350
Organoid is a newly developed cellular there-dimensional culture system in recent years. Organoids have a three-dimensional structure, which is similar to that of the real organs. Together with the characteristics of self-renewal and reproduction of tissue origin, organoids can better simulate the function of real organs. Organoids provide a new platform for the study of organogenesis, regeneration, disease pathogenesis, and drug screening. The digestive system is an essential part of the human body and performs important functions. To date, organoid models of various digestive organs have been successfully established. This review summarizes the latest research progress of organoids of taste buds, esophagi, stomachs, livers and intestines, and prospects future application of organoids.
Humans
;
Organoids
;
Intestines
;
Liver