1.Studies on the synthesis and anti-fatigue activity of the salidroside derivatives
Wei ZHENG ; Xufang CAO ; Kaixia ZHANG ; Liang SUN ; Yongsheng JIN ; Liangjun GUO
Journal of Pharmaceutical Practice 2018;36(1):61-63,67
Objective A series of 4 substituted salidroside derivatives were designed and synthesized .Their anti-fatigue effects were investigated .Methods With five-acetyl glucose and different 4-substituted benzyl tyrosols as the starting materi-als ,salidroside derivatives were synthesized through glycosidation and deacetylation reactions .The exercise exhaustive mice model was used to study the anti-fatigue effects of those synthesized derivatives by comparing the loading swimming time of mice .Results 10 novel salidroside derivatives were synthesized .The loading swimming tests showed that the swimming time of the mice in the positive group (salidroside) and 3a-1 group (phenethyl-β-D-glucoside) was longer than that in the control group with statistically significant difference(P<0 .05) .The swimming times for other groups were similar to control group with no statistically significant difference .Conclusion This synthetic method for salidroside derivatives was convenient and feasible for large production .The 4-hydroxyl groups on the benzene ring of salidroside and its derivatives may be the active site responsible for their anti-fatigue activity .
2.Constructing a phage-displayed random mutation library of HIV-1 Tat38-61 at the sites of 51 and 55 amino acids in basic region.
Yibing GE ; Xufang YANG ; Zheming DU ; Qiang PANG ; Jie CAO ; Qiuli CHEN ; Jinhong WANG ; Huaqun ZHANG ; Wenting LIAO ; Peipei QI ; Chao LIU ; Pingping ZHANG ; Songhua DENG ; Wei PAN
Chinese Journal of Biotechnology 2011;27(5):755-763
We constructed a phage-displayed random mutation library of Tat38-61(51N/55N), for studying the molecular evolution screening of HIV-1 Tat38-61 epitope. We used primers containing the random nucleotide sequences, and introduced the random mutations at the sites of 51 and 55 amino acids coding sequences into full-length Tat sequences by overlapping PCR. With the randomly mutated full-length Tat as template, the Tat38-61(51N/55N) mutants which contained recognition sequences for the Xba I in both ends were amplified by PCR using the designed primers. The mutants were cloned into Xba I site in the phagemid vector pCANTAB5S, then the recombinants were transformed into E. coli TG1, a phage-displayed the random mutation library of Tat38-61(51N/55N) was constructed by the rescue of help virus M13KO7. The results showed that the library consisted of about 5.0 x 10(6) colonies and the phage library titer was 2.65 x 10(12) TU/mL. More than 56.50% colonies in the library were positive for insertion. Sequence analysis showed that the nucleotides encoding amino acids at the sites of 51 and 55 distributed randomly. The constructed mutation library could meet the requirements for the following molecular evolution screening, and might prepare the Tat mutants for the further study of new Tat vaccine candidates.
AIDS Vaccines
;
immunology
;
Escherichia coli
;
genetics
;
metabolism
;
HIV-1
;
genetics
;
Humans
;
Mutation
;
Peptide Fragments
;
biosynthesis
;
genetics
;
immunology
;
Peptide Library
;
Recombinant Proteins
;
biosynthesis
;
genetics
;
immunology
;
tat Gene Products, Human Immunodeficiency Virus
;
biosynthesis
;
genetics
;
immunology
3.Effects of macrophage migration inhibitory factor on survival,proliferation,and differentiation of human embryonic stem cells
Ting HUANG ; Xiaohan ZHENG ; Yuanji ZHONG ; Yanzhao WEI ; Xufang WEI ; Xudong CAO ; Xiaoli FENG ; Zhenqiang ZHAO
Chinese Journal of Tissue Engineering Research 2025;29(7):1380-1387
BACKGROUND:Macrophage migration inhibitory factor(MIF)is a pleiotropic cytokine,which is secreted in different types of stem cells and can regulate the proliferation,differentiation and migration of various types of stem cells.Our previous research has confirmed that human embryonic stem cells secrete MIF and that its concentration in the culture medium is relatively stable.However,whether MIF is involved in the survival,proliferation and differentiation of human embryonic stem cells remains unclear. OBJECTIVE:To investigate the effects of MIF on survival,proliferation,and differentiation of human embryonic stem cells. METHODS:(1)Human embryonic stem cells H9 were cultured.The growth curve of cells was detected and plotted by CCK-8 assay.Enzyme-linked immunosorbent assay was used to determine the level of MIF in the medium.(2)To determine the effects of exogenous MIF on the survival and proliferation of human embryonic stem cells,different groups were established:the control group,which was cultured in stem cell medium without any modifications;the exogenous MIF group,which was treated with different concentrations(30,100,300 ng/mL)of MIF in the stem cell medium;the MIF inhibitor ISO-1 group,which was treated with different concentrations(2,7,21 μmol/L)of ISO-1 in the stem cell medium;and the MIF+ISO-1 group,which was treated with different concentrations of ISO-1 along with 100 ng/mL of MIF.Cell viability was assessed using the CCK-8 assay.(3)To further elucidate the effect of MIF gene on survival and proliferation of human embryonic stem cell,the MIF knockout H9 cell line was constructed by CRISPR-Cas 9 technology to observe the lineage establishment.(4)To determine the effect of high concentrations of MIF on human embryonic stem cell differentiation,100 ng/mL MIF and 100 ng/mL of CXCR4 neutralizing antibody were separately added to the normal stem cell culture medium.The expression levels of self-renewal factors(KLF4,c-MYC,NANOG,OCT4,and SOX2)and differentiation transcription factors(FOXA2,OTX2)were measured using real-time quantitative polymerase chain reaction,immunofluorescence staining,and western blot analysis. RESULTS AND CONCLUSION:(1)The logarithmic growth phase of H9 cells was between 3-6 days.Under normal growth conditions,human embryonic stem cells secreted MIF at a concentration of approximately 20 ng/mL,independent of cell quantity.(2)Compared to the control group,the addition of different concentrations of MIF had no effect on the proliferation of human embryonic stem cells(P>0.05).ISO-1 significantly inhibited the proliferation of human embryonic stem cells,with a stronger inhibition observed at higher concentrations of ISO-1(P<0.05).The addition of MIF in the presence of ISO-1 reduced the inhibitory effect of ISO-1(P<0.05).(3)Real-time quantitative polymerase chain reaction showed that knocking out 50%of the MIF gene resulted in a significant decrease in the growth vitality of human embryonic stem cells and failure to establish cell lines.(4)Adding 100 ng/mL exogenous MIF to the culture medium resulted in a decrease in the mRNA,protein,and fluorescence expression levels of the self-renewal transcription factor KLF4,while the mRNA,protein,and fluorescence expression levels of the differentiation factor FOXA2 increased.(5)When 100 ng/mL CXCR4 neutralizing antibody was added to the culture medium,the mRNA and protein expression levels of KLF4 increased,while the mRNA and protein expression levels of FOXA2 decreased,contrary to the expression trend observed in the MIF group.In conclusion,the endogenous secretion of MIF by human embryonic stem cells is essential for their survival.The addition of MIF to the culture medium does not promote the proliferation of human embryonic stem cells.However,it can lead to a decrease in the expression of the self-renewal factor KLF4 and an increase in the expression of the transcription factor FOXA2.This provides a clue for further investigation into the effects and mechanisms of MIF on the differentiation of human embryonic stem cells.The MIF-CXCR4 axis plays a regulatory role in this process.