1.Anti-Influenza A Virus Effect of Hypericum perforatum L. Extract
Xiuying PU ; Jianping LIANG ; Xuehong WANG ; Tao XU ; Lanying HUA ; Ruofeng SHANG ; Yu LIU ; Yanmei XING
Virologica Sinica 2009;24(1):19-27
To study the antiviral effect of Hypericum perforatum L. extract (HPE) on influenza A virus (IAV) (H1N1) in vitro and in vivo. Cytopathic effect (CPE) and neutral red (NR) dye uptake were used to examine the antiviral effect of HPE on Madin Darby Canine Kidney (MDCK) cells which were infected with IAV in vitro. HPE was effective against influenza A virus (IAV) in vitro, with a 50% effective concentration (EC50) of 40 μg/mL. The mean 50% cytotoxic concentration (CC50) in the MDCK used in these experiments was 1.5 mg/mL. Ribavirin was run in parallel with EC50 values of 5.0 μg/mL; the mean CC50 for ribavirin was 520 μg/mL. Oral gavage administrations of HPE or ribavirin to mice infected with the IAV were highly effective in preventing death, slowing the decline of arterial oxygen saturation, inhibiting lung consolidation and reducing lung virus titers. The minimum effective dose of HPE in these studies was 31.25 mg/kg/day, which was administered twice daily for 5 d beginning 4 h prior to virus exposure. Below a dosage of 2000 mg/kg/day, almost all treated mice survived, which suggests that HPE is of low toxicity. Ribavirin's minimum effective dose was 40 mg/kg/day with the LD50 determined to be 200 mg/kg/day. Delay of the initiation of either HPE or ribavirin therapy, using approximately 1/3 LD50 dose each time, could still be protective as late as 48 h after exposure to the IAV. While both agents appeared to have similar efficacy against IAV infections, HPE was considered to be less toxic and may warrant further evaluation as a possible therapy for influenza.
2.Finite element analysis of three internal fixation modalities for treatment of Pauwels type Ⅲ femoral neck fractures under different loading conditions
Zhenggang LI ; Xuehong SHANG ; Zhang WU ; Hong LI ; Chaojun SUN ; Huadong CHEN ; Zhe SUN ; Yi YANG
Chinese Journal of Tissue Engineering Research 2025;29(3):455-463
BACKGROUND:There is still no consensus on the optimal internal fixation for the treatment of Pauwels Ⅲ femoral neck fracture,and most of the related finite element analyses have been performed using a single simplified loading condition,and the biomechanical properties of commonly used internal fixation devices need to be further investigated. OBJECTIVE:To analyze the biomechanical characteristics of Pauwels Ⅲ femoral neck fractures treated with cannulated compression screw,dynamic hip screw,and femoral neck system by finite element method under different loading conditions of single-leg standing loads and sideways fall loads. METHODS:The DICOM data of healthy adult femur were obtained by CT scanning,imported into Mimics 15.0 software to obtain the rough model of bone tissue.The data exported from Mimics were optimized by Geomagics software,and then three internal fixation models were built and assembled with the femur model according to the parameters of the clinical application of the cannulated compression screw,dynamic hip screw,and femoral neck system by using Pro/E software.Finally,the three internal fixation models were imported into Ansys software for loading and calculation to analyze the stress distribution and displacement of the femur and the internal fixation under different working conditions of single-leg standing loads and sideways fall loads,as well as the stress characteristics of the calcar femorale and Ward's triangle. RESULTS AND CONCLUSION:(1)Under the single-leg standing load and the sideways fall load,the proximal femoral stress of the three internal fixation models was mainly distributed above the fracture end of the femoral neck.The peak stress of the proximal femoral end,fracture end,Ward triangle,and calcar femorale of the three internal fixation models were the smallest in the femoral neck system model and the largest in the cannulated compression screw model.(2)Under the single-leg standing load and the sideways fall load,the peak displacement of the proximal femur of the three internal fixation models was all located at the top of the femoral head,and the peak displacement was the smallest in the femoral neck system model and the largest in the cannulated compression screw model.(3)The peak displacement of the three internal fixation models was all located at the top of the internal fixation device under the single-leg standing and sideways fall loading conditions,and the peak displacement values were the smallest in the femoral neck system internal fixation model and the largest in the cannulated compression screw internal fixation model.(4)The internal fixation stress of the three internal fixation models was mainly distributed in the area near the fracture end of the internal fixation device under the single-leg standing and sideways fall loads,and the peak value of internal fixation stress was the smallest in the femoral neck system model and the largest in the cannulated compression screw model.(5)These results suggest that the mechanical stability of the femoral neck system is the best,but there may be a risk of stress shielding of the fracture end and calcar femorale.The stress of the internal fixation device of the femoral neck system is more dispersed,and the risk of internal fixation break is lower.