1.Influence of hybridization probe capture and amplicon library construction methods on HLA genotyping resolution level
Xiaoni YUAN ; Tengteng ZHANG ; Yang LI ; Xue JIANG ; Tianjie YANG ; Xiaojing BAO ; Jun HE
Chinese Journal of Blood Transfusion 2025;38(3):303-308
[Objective] To compare next generation sequencing (NGS) library construction technology between probe hybridization capture and amplicon methods, and analyze the influencing factors of HLA genotyping resolution level and its prospects in clinical applications. [Methods] A total of 207 clinical samples with known typing results and samples from the proficiency testing plan were selected. The conformity rate of HLA genotyping results, allele coverage and typing data analysis indicators were confirmed, and the effects of two library construction methods on the level of HLA genotyping discrimination were compared. [Results] The concordance rate of 207 samples with the feedback results of PT or prior well-characterized HLA genotypes was 100%. Among them, 91 samples were captured using hybridization probe capture method. Compared with the original amplicon method, the hybridization probe capture method can distinguish the alleles of DRB1 and DPB1 that cannot be determined in 13 samples. The allelic imbalance of DRB1, DPA1, and DQB1 loci in 6 samples was resolved. Three samples were found to have missed detection of alleles at the DQA1 and DQB1 loci. [Conclusion] The performance indicators of hybridization probe capture and amplicon performance confirmation meet the requirements of clinical detection of HLA genotyping, which provides an experimental method and basis for clinical application.
2.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
3.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
4.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
5.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
6.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
7.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
8.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
9.Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues
Yuqing JIANG ; Mingcheng XUE ; Lu OU ; Huiquan WU ; Jianhui YANG ; Wangzihan ZHANG ; Zhuomin ZHOU ; Qiang GAO ; Bin LIN ; Weiwei KONG ; Songyue CHEN ; Daoheng SUN
Tissue Engineering and Regenerative Medicine 2025;22(2):211-224
BACKGROUND:
The contraction behaviors of cardiomyocytes (CMs), especially contraction synchrony, are crucial factors reflecting their maturity and response to drugs. A wider field of view helps to observe more pronounced synchrony differences, but the accompanied greater computational load, requiring more computing power or longer computational time.
METHODS:
We proposed a method that directly correlates variations in optical field brightness with cardiac tissue contraction status (CVB method), based on principles from physics and photometry, for rapid video analysis in wide field of view to obtain contraction parameters, such as period and contraction propagation direction and speed.
RESULTS:
Through video analysis of human induced pluripotent stem cell (hiPSC)-derived CMs labeled with green fluorescent protein (GFP) cultured on aligned and random nanofiber scaffolds, the CVB method was demonstrated to obtain contraction parameters and quantify the direction and speed of contraction within regions of interest (ROIs) in wide field of view. The CVB method required less computation time compared to one of the contour tracking methods, the LucasKanade (LK) optical flow method, and provided better stability and accuracy in the results.
CONCLUSION
This method has a smaller computational load, is less affected by motion blur and out-of-focus conditions, and provides a potential tool for accurate and rapid analysis of cardiac tissue contraction synchrony in wide field of view without the need for more powerful hardware.
10.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.

Result Analysis
Print
Save
E-mail