1.Targeting effect and anti-tumor mechanism of folic acid-modified crebanine nanoparticles combined with ultra-sound irradiation on M109 cells in vitro and in vivo
Hailiang ZHANG ; Xiaoyu ZHAO ; Jiahua MEI ; Rui PAN ; Junze TANG ; Kun YU ; Rui XUE ; Xiaofei LI ; Xin CHENG
China Pharmacy 2025;36(14):1730-1736
OBJECTIVE To investigate the targeting effect of folic acid-modified crebanine nanoparticles (FA-Cre@PEG- PLGA NPs, hereinafter referred to as “NPs”) combined with ultrasound irradiation on M109 cells in vitro and in vivo after administration, and explore the anti-tumor mechanism. METHODS CCK-8 assay was used to detect the inhibitory effect of NPs combined with ultrasound irradiation on the proliferation of M109 cells, and the best ultrasound time was selected. Using human lung cancer A549 cells as a control, the targeting of NPs combined with ultrasound irradiation to M109 cells was evaluated by free folic acid blocking assay and cell uptake assay. The effects of NPs combined with ultrasound irradiation on the migration, invasion, apoptosis, cell cycle and reactive oxygen species (ROS) levels of M109 cells were detected by cell scratch test, Transwell chamber test and flow cytometry at 1 h after 958401536@qq.com administration; the changes of mitochondrial membrane potential (MMP) were observed by fluorescence inverted microscope. A mouse subcutaneous tumor model of M109 cells was constructed, and the in vivo tumor targeting of NPs combined with ultrasound irradiation was investigated by small animal in vivo imaging technology. RESULTS NPs combined with ultrasound irradiation could significantly inhibit the proliferation of M109 cells, and the optimal ultrasound time was 1 h after administration. The free folic acid could antagonize the inhibitory effect of NPs on the proliferation of M109 cells, and combined with ultrasound irradiation could partially reverse this antagonism. Compared with A549 cells, the uptake rate of NPs in M109 cells was significantly higher (P<0.01), and ultrasound irradiation could promote cellular uptake. NPs combined with ultrasound irradiation could inhibit the migration and invasion of M109 cells and block the cell cycle in the G0/G1 and G2/M phases. Compared with control group, the apoptosis rate of M109 cells and ROS level were increased significantly (P<0.01), while the MMP decreased significantly (P<0.01) in the different concentration (100, 200, 300 μg/mL) groups of M109 cells. Compared with the mice in non-ultrasound group, the fluorescence intensity and tumor-targeting index of the tumor site in the 0 h ultrasound group were significantly enhanced (P<0.05 or P<0.01). CONCLUSIONS NPs combined with ultrasound irradiation have a strong targeting effect on M109 cells in vitro and in vivo, the anti-tumor mechanism includes inhibiting cell migration and invasion, blocking cell cycle, and inducing apoptosis.
2.Chemical and pharmacological research progress on Mongolian folk medicine Syringa pinnatifolia.
Kun GAO ; Chang-Xin LIU ; Jia-Qi CHEN ; Jing-Jing SUN ; Xiao-Juan LI ; Zhi-Qiang HUANG ; Ye ZHANG ; Pei-Feng XUE ; Su-Yi-le CHEN ; Xin DONG ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(8):2080-2089
Syringa pinnatifolia, belonging to the family Oleaceae, is a species endemic to China. It is predominantly distributed in the Helan Mountains region of Inner Mongolia and Ningxia of China. The peeled roots, stems, and thick branches have been used as a distinctive Mongolian medicinal material known as "Shan-chen-xiang", which has effects such as suppressing "khii", clearing heat, and relieving pain and is employed for the treatment of cardiovascular and pulmonary diseases and joint pain. Over the past five years, significant increase was achieved in research on chemical constituents and pharmacological effects. There were a total of 130 new constituents reported, covering sesquiterpenoids, lignans, and alkaloids. Its effects of anti-myocardial ischemia, anti-cerebral ischemia/reperfusion, sedation, and analgesia were revealed, and the mechanisms of agarwood formation were also investigated. To better understand its medical value and potential of clinical application, this review updates the research progress in recent five years focusing on the chemical constituents and pharmacological effects of S. pinnatifolia, providing reference for subsequent research on active ingredient and support for its innovative application in modern medicine system.
Medicine, Mongolian Traditional
;
Humans
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Syringa/chemistry*
3.Research progress in the mechanism and treatment of post traumatic platelet dysfunction.
Kai LI ; Peixin WANG ; Kun WEI ; Jia LIU ; Xue BAI ; Tiantao ZHANG ; Chen ZHANG ; Shihong XU
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):1041-1046
Trauma is the main cause of death and disability. Patients with severe trauma have hemorrhagic shock, traumatic coagulopathy and other diseases, which increase the risk of death. Platelets are important in the hemostatic response, but their function is rapidly dysregulated in trauma patients, leading to traumatic coagulopathy, blood loss, and early death. In addition to their role in hemostasis, platelets act as coordinators of the initial immune response, which can lead to immunothrombosis, organ dysfunction, and increased late mortality. At present, the treatment of post traumatic platelet dysfunction is mainly based on early hemostasis, and late prevention and treatment of thrombosis and organ dysfunction. In this review, the characteristics, underlying mechanisms, diagnosis and treatment strategies of platelet dysfunction in different periods are summarized, to provide ideas for studying the mechanism of platelet dysfunction after trauma and the treatment strategy for trauma patients.
Humans
;
Wounds and Injuries/therapy*
;
Blood Platelets/metabolism*
;
Blood Platelet Disorders/etiology*
;
Animals
;
Hemostasis
4.Genome-wide investigation of transcription factor footprints and dynamics using cFOOT-seq.
Heng WANG ; Ang WU ; Meng-Chen YANG ; Di ZHOU ; Xiyang CHEN ; Zhifei SHI ; Yiqun ZHANG ; Yu-Xin LIU ; Kai CHEN ; Xiaosong WANG ; Xiao-Fang CHENG ; Baodan HE ; Yutao FU ; Lan KANG ; Yujun HOU ; Kun CHEN ; Shan BIAN ; Juan TANG ; Jianhuang XUE ; Chenfei WANG ; Xiaoyu LIU ; Jiejun SHI ; Shaorong GAO ; Jia-Min ZHANG
Protein & Cell 2025;16(11):932-952
Gene regulation relies on the precise binding of transcription factors (TFs) at regulatory elements, but simultaneously detecting hundreds of TFs on chromatin is challenging. We developed cFOOT-seq, a cytosine deaminase-based TF footprinting assay, for high-resolution, quantitative genome-wide assessment of TF binding in both open and closed chromatin regions, even with small cell numbers. By utilizing the dsDNA deaminase SsdAtox, cFOOT-seq converts accessible cytosines to uracil while preserving genomic integrity, making it compatible with techniques like ATAC-seq for sensitive and cost-effective detection of TF occupancy at the single-molecule and single-cell level. Our approach enables the delineation of TF footprints, quantification of occupancy, and examination of chromatin influences on TF binding. Notably, cFOOT-seq, combined with FootTrack analysis, enables de novo prediction of TF binding sites and tracking of TF occupancy dynamics. We demonstrate its application in capturing cell type-specific TFs, analyzing TF dynamics during reprogramming, and revealing TF dependencies on chromatin remodelers. Overall, cFOOT-seq represents a robust approach for investigating the genome-wide dynamics of TF occupancy and elucidating the cis-regulatory architecture underlying gene regulation.
Transcription Factors/genetics*
;
Humans
;
Chromatin/genetics*
;
Animals
;
Binding Sites
;
Mice
;
DNA Footprinting/methods*
5.Exploration and practice of teaching reform in Synthetic Biology.
Bo ZHANG ; Lianggang HUANG ; Aiping PANG ; Zheyan WU ; Junping ZHOU ; Xue CAI ; Lijuan WANG ; Kun NIU ; Liqun JIN ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2025;41(8):3311-3317
Synthetic biology is a crucial tool for the development of the bio-industry and bio-economy, representing a significant aspect of new quality productive forces. As a core course for graduate students in bioengineering, Synthetic Biology plays a vital role in ensuring the supply of essential talents for the development of the bio-industry in the new era. To better serve regional economic development and provide high-level talents for China's progress in the bio-industry, we analyzed typical issues encountered in the past teaching activities, set up a multi-disciplinary teaching team, optimized the course contents, adjusted the teaching mode, and mobilized students' learning interest. With the application of scientific research project as the starting point, we guided students to think and discuss deeply through the simulation of application writing and project defense, which improved students' critical thinking and innovative thinking. With industrialization as a focus, we explored a new training model combining production, education, and research through the joint practice base of the university and enterprises introduced typical cases of biomanufacturing to encourage students to engage in scientific research. The teaching reform significantly enhances the comprehensive abilities and national sentiments of graduate students. This paper hopes to serve as a reference for colleagues engaged in teaching in this field.
Synthetic Biology/education*
;
Teaching
;
China
;
Humans
6.Study on the Effect of Liuwei Dihuang Pills on Regulating the Antigen Cross-Presenting Ability of Dendritic Cells by Interfering with Gap Junctional Communication Function
Yue SONG ; Man-Si XU ; Xue-Ying ZHONG ; Wen-Jing ZHANG ; Xiao-Yi CHEN ; Biao-Yan DU ; Jian-Yong XIAO ; Kun WANG
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):169-177
Objective To investigate whether Liuwei Dihuang Pills enhances the antigen cross-presenting ability of dendritic cell(DC)by increasing gap junctional intercellular communication(GJIC),and to explore the mechanisms involved.Methods Western Blot and immunofluorescence were used to observe the effects of Liuwei Dihuang Pills-containing serum on the expression and membrane localisation of gap junction protein connexin43(Cx43)in mouse melanoma cells(B16);Calcein-AM/DiI fluorescence tracer assay was used to observe the effects of Liuwei Dihuang Pills-containing serum on the function of GJIC in B16 cells;flow cytometry was used to observe the role of GJIC in the enhancement of DC antigen presenting ability by Liuwei Dihuang Pills-containing serum;and propidium iodide(PI)/Hoechst staining assay was used to observe the immunocidal effect of CD8+ T-lymphocytes.Results Western Blot and immunofluorescence experiments showed that Liuwei Dihuang Pills-containing serum led to the up-regulation of Cx43 expression;fluorescence tracer experiments proved that the GJIC function of B16 cells was significantly enhanced by Liuwei Dihuang Pills-containing serum;flow cytometry analyses showed that the DC antigen-presenting ability was enhanced by Liuwei Dihuang Pills-containing serum;and the results of PI/Hoechst staining showed that the immuno-killing effect of CD8+T-cells was more significant after the intervention of Liuwei Dihuang Pills-containing serum in B16-OVA.Conclusion Liuwei Dihuang Pills improve the GJIC function by up-regulating the Cx43 expression of melanoma cells,and then enhance the cross-presenting ability of DCs thus activating stronger CD8+ T-cell immunocidal responses.
7.Research progress on the effect of α7 nicotinic acetylcholine receptor on perioperative neurocognitive function
Shang-Kun SI ; Ying-Xue XU ; Wei-Liang ZHANG ; Jia-Fu JI ; Dong-Bin ZHANG
Medical Journal of Chinese People's Liberation Army 2024;49(3):343-348
α7 nicotinic acetylcholine receptor(α7nAChR)is widely expressed in the central nervous system and immune system,and plays a neuro-immunoregulatory role.On the one hand,α7nAChR is involved in the transmission of neurotransmitters,the conduction of excitatory signals and the maintenance of synaptic plasticity,which is of great significance for maintaining the normal and stable neurocognitive function.On the other hand,as an important part of the cholinergic anti-inflammatory pathway,α7nAChR is involved in the regulation of physiological and pathological processes such as inflammatory response,oxidative stress,apoptosis and autophagy in the central system,and plays an immunomodulatory and neuroprotective role,thus being potential target for improving perioperative neurocognitive function.This article reviews the biological characteristics of α7nAChR and its effect on perioperative neurocognitive function,in order to provide ideas and methods for clinical improvement of perioperative neurocognitive function in surgical patients.
8.Mechanism of Yes-Associated Protein 1 Ameliorating Aristolochic Acid 1-Induced Liver Injury in Mice Based on Untargeted Metabolomics Techniques
Yu XUE ; Caige LI ; Yiwei LIU ; Jiali YANG ; Zhiqin ZHANG ; Jingmin JI ; Kun YU ; Xinli SHI
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(1):46-55
Objective To investigate the mechanism of Yes-associated protein 1(YAP1)ameliorating aristolochic acid 1(AAI)-induced liver injury in mice based on untargeted metabolomics techniques.Methods There were 83-week-old male hepatocyte-specific Yap1 gene knockout mice(genotyped as Yap1Flox/Flox,Albumin-Cre,aka.Yap1LKO)were randomly selected as the Yap1LKO+AAI group,and 8 Yap1Flox control mice as the Yap1Flox+AAI group.Both groups were injected intraperitoneally with AAI at a dose of 2.5 mg·kg-1·d-1 for 14 consecutive days.Genotypes were identified by tail PCR;serum alanine transaminase(ALT)and aspartate transaminase(AST)activities were determined by microplate assay;histopathological changes of liver tissue were observed by HE staining;and the protein expression of YAP1 in liver tissue was determined by immunohistochemistry.The untargeted metabolomics approach was used to analyze the liver tissue differential metabolites,and the samples were analyzed by ultra performance liquid chromatography-quadrupole-electrostatic field orbit trap high-resolution mass spectrometry,and the differential metabolites were screened by principal component analysis(PCA),Partial least square-discriminant analysis(PLS-DA),and orthogonal partial least squares-discriminant analysis(OPLS-DA);using HMDB database and METLIN database to identify metabolites,and the pathway enrichment of differential metabolites was analyzed by KEGG database.Results(1)After 14 days of AAI induction,the increase of body mass in Yap1LKO mice was lower than that in Yap1Flox mice,but there was no statistical significance(P>0.05).On day 14,compared with the Yap1Flox+AAI group,the serum ALT and AST enzyme activities in the Yap1LKO+AAI group of mice were significantly increased(P<0.05),and the histopathological damage of the liver was significantly aggravated.The livers of the Yap1Flox mice had a positive protein expression of YAP1,whereas the Yap1LKO mice did not have a positive protein expression of YAP1.(2)A total of 139 differential metabolites with significant changes(VIP>1 and P<0.05)were screened by metabonomic analysis;compared with Yap1LKO+ AAI group,62 liver metabolites in Yap1Flox+AAI group were up-regulated,including choline,taurine,hypotaurine,α-linolenic acid,eleostearic acid,chenodeoxycholic acid and so on.Seventy-seven metabolites were down-regulated including glycerophosphocholine,L-phosphatidylcholine,L-glutamine,L-serine,L-glutathione,5-methionine,phenylalanine,glucose 6-phosphate,lactic acid,uric acid glycosides,etc..KEGG-enriched pathways were mainly choline metabolism,glycerophospholipid metabolism,insulin resistance,glutathione metabolism,etc..Conclusion Hepatocyte-specific Yap1 gene knockout exacerbated AAI-induced liver injury in mice,and YAP1 was involved in the regulation of choline metabolism and glycerophospholipid metabolism through the up-regulation of unsaturated fatty acids,such as choline and taurine,which ameliorated AAI-induced liver injury in mice.
9.Pachymic acid exerts antitumor activities by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B
Hao Department of Emergency, Affiliated Hangzhou First People&rsquo ; s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China ; Kun Zhu ; Xue-Feng Zhang ; Yi-Hui Ding ; Bing Zhu ; Wen Meng ; Qing-Song Ding ; Fan Zhang
Asian Pacific Journal of Tropical Biomedicine 2024;14(4):170-180
Objective: To determine the inhibitory effects of pachymic acid on lung adenocarcinoma (LUAD) cells and elucidate its underlying mechanism. Methods: CCK-8, wound healing, Transwell, Western blot, tube formation, and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation, metastasis, angiogenesis as well as autophagy. Subsequently, molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B (PTP1B). Moreover, PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid. Results: Pachymic acid suppressed LUAD cell viability, metastasis as well as angiogenesis while inducing cell autophagy. It also targeted PTP1B and lowered PTP1B expression. However, PTP1B overexpression reversed the effects of pachymic acid on metastasis, angiogenesis, and autophagy as well as the expression of Wnt3a and β-catenin in LUAD cells. Conclusions: Pachymic acid inhibits metastasis and angiogenesis, and promotes autophagy in LUAD cells by modulating the Wnt/ β-catenin signaling pathway via targeting PTP1B.
10.Research Advance on Smartphone-based Visual Biosensor in Point-of-Care Testing
Xian-Xin XIANG ; Hua-Yue SUN ; Hui-Ning CHAI ; Kun YU ; Li-Jun QU ; Guang-Yao ZHANG ; Xue-Ji ZHANG
Chinese Journal of Analytical Chemistry 2024;52(2):145-156
Human physiological indicators have become an important standard for assessing health in modern society.Traditional detection methods often require a separate laboratory,complex operation process and long detection time,so it is urgent to develop portable,fast and accurate on-site detection technologies for bioanalysis.Point-of-care testing(POCT),which differs from traditional laboratory testing,can realize the rapid in situ detection of biomarkers without the complicated analytical process of the laboratory.Smartphones,which are an essential tool in our daily life,not only have independent operating systems and built-in storage functions,but also have high-definition cameras,which have great application potential in POCT visualization.The combination of various biosensing technologies and smartphones has developed into a new direction in the field of POCT.This review mainly introduced the research progress of smartphone-based visual biosensors in POCT in recent years,including colorimetric sensors,fluorescence sensors,chemiluminescence sensors and electrochemiluminescence sensors.Finally,the problems faced by smart-phone-based visual biosensors in the application of POCT were summarized,and their future development was prospected.


Result Analysis
Print
Save
E-mail