1.Current status of cognitive frailty among the elderly in community
ZHAI Yujia ; ZHANG Tao ; GU Xue ; XU Le ; WU Mengna ; LIN Junfen ; WU Chen
Journal of Preventive Medicine 2025;37(8):762-766,772
Objective:
To investigate the current status and influencing factors for cognitive frailty among the elderly in community, so as to provide the evidence for early identification and prevention of cognitive frailty among the elderly.
Methods:
Residents aged 60 years and above with local household registration from 11 counties (cities, districts) in Zhejiang Province from 2021 to 2023 were selected as study participants using a multistage random sampling method. Demographic information, lifestyle, and health status were collected through questionnaire surveys. Depressive symptoms were assessed using the Patient Health Questionnaire. Cognitive frailty was evaluated using the FRAIL Scale and the Mini-Mental State Examination. Factors affecting cognitive frailty among the elderly in community were identified using a multivariable logistic regression model.
Results:
A total of 16 613 individuals were surveyed, including 7 465 males (44.93%) and 9 148 females (55.07%). The average age was (70.97±7.29) years. A total of 784 individuals were detected with depressive symptoms, with a detection rate of 4.72%. A total of 724 individuals were detected with cognitive frailty, with a detection rate of 4.36%. Multivariable logistic regression analysis showed that females (OR=1.419, 95%CI: 1.179-1.708), aged ≥70 years (70-<80 years old, OR=1.869, 95%CI: 1.490-2.345; ≥80 years old, OR=5.017, 95%CI: 3.935-6.398), without a spouse (OR=1.495, 95%CI: 1.234-1.810), sedentary (OR=2.420, 95%CI: 1.829-3.202), chronic diseases (1 type, OR=1.456, 95%CI: 1.175-1.804; ≥2 types, OR=1.639, 95%CI: 1.314-2.045), and depressive symptoms (OR=4.191, 95%CI: 3.361-5.225) were associated with a higher risk of cognitive frailty among the elderly in community. Conversely, a lower risk of cognitive frailty was seen among the elderly in community who had primary school or above (primary school, OR=0.512, 95%CI: 0.389-0.676; junior high school or above, OR=0.464, 95%CI: 0.354-0.608), engaged in physical exercise (OR=0.396, 95%CI: 0.291-0.539), and were reported average or good self-rated health status (average, OR=0.641, 95%CI: 0.475-0.866; good, OR=0.150, 95%CI: 0.109-0.208).
Conclusions
The detection rate of cognitive frailty among the elderly in community is relatively low and is influenced by demographic factors such as gender, age, education level, as well as lifestyle like sedentary and physical exercise, and health status. It is recommended to reduce the risk of cognitive frailty among the elderly through multidimensional interventions, including health education, promotion of healthy lifestyles, and enhanced mental health support.
2.Construction of a nomogram prediction model for Alzheimer's disease among the elderly in community
ZHANG Tao ; LIN Junfen ; GU Xue ; XU Le ; LI Fudong ; WU Chen
Journal of Preventive Medicine 2025;37(9):875-880
Objective:
To establish a nomogram prediction model for Alzheimer's disease (AD) among the elderly in community, so as to provide the evidence for early screening and prevention of AD.
Methods:
Based on the Zhejiang Healthy Aging Cohort Study, the elderly aged 60-90 years who completed the baseline survey were selected as the study subjects. Follow-up surveys were conducted from 2015 to 2016 and from 2019 to 2021. Sociodemographic characteristics, lifestyle factors, medical history, and waist circumference were collected through questionnaire surveys and physical examinations. Cognitive function was assessed using the Mini-Mental State Examination (MMSE), and a diagnosis of AD was made based on the Alzheimer's Disease Assessment Scale-Cognitive Subscale and medical history. The participants were randomly divided into training and validation sets at 8∶2 ratio. LASSO regression was used to screen for predictive factors. Multivariable logistic regression model was used to analyze predictive factors and construct a nomogram. The model was analyzed and evaluated using the receiver operating characteristic (ROC) curve and decision curve analysis (DCA).
Results:
A total of 6 988 elderly were included at baseline, with a mean age of (68.19±6.63) years. There were 3 438 males (49.20%), and 3 550 females (50.80%). The median follow-up duration was 4.90 (interquartile range, 3.80) years, with 817 new cases of AD were identified, yielding an incidence of 11.69%. LASSO regression and multivariable logistic regression showed that age (OR=1.017, 95%CI: 1.005-1.030), gender (female, OR=1.820, 95%CI: 1.533-2.165), educational level (primary school, OR=0.813, 95%CI: 0.673-0.980), physical exercise (not active, OR=1.572, 95%CI: 1.260-1.980), dining companions (spouse and children, OR=0.771, 95%CI: 0.598-0.995), baseline MMSE score (OR=0.843, 95%CI: 0.821-0.866), and waist circumference (OR=0.981, 95%CI: 0.973-0.989) were risk predictors for AD among the elderly in community. The prediction model demonstrated an area under the ROC curve of 0.740 (95%CI: 0.698-0.783) in the validation set, with a sensitivity of 0.731 and a specificity of 0.667. DCA indicated that when the probability threshold was 0.060 to 0.325, the clinical net benefit was relatively high.
Conclusion
The AD risk prediction model constructed in this study has good discrimination and clinical practicability, can be used for early screening of AD among the elderly in the community.
3.Efficacy and Safety of Juan Bi Pill with Add-on Methotrexate in Active Rheumatoid Arthritis: A 48-Week, Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial.
Qing-Yun JIA ; Yi-Ru WANG ; Da-Wei SUN ; Jian-Chun MAO ; Luan XUE ; Xiao-Hua GU ; Xiang YU ; Xue-Mei PIAO ; Hao XU ; Qian-Qian LIANG
Chinese journal of integrative medicine 2025;31(2):99-107
OBJECTIVE:
To explore the efficacy and safety of Juan Bi Pill (JBP) in treatment of active rheumatoid arthritis (RA).
METHODS:
From February 2017 to May 2018, 115 participants from 4 centers were randomly divided into JBP group (57 cases) and placebo group (58 cases) in a 1:1 ratio using a random number table method. Participants received a dose of JBP (4 g, twice a day, orally) combined with methotrexate (MTX, 10 mg per week) or placebo (4 g, twice a day, orally) combined with MTX for 12 weeks. Participants were required with follow-up visits at 24 and 48 weeks, attending 7 assessment visits. Participants were undergo disease activity assessment 7 times (at baseline and 2, 4, 8, 12, 24, 48 weeks) and safety assessments 6 times (at baseline and 4, 8, 12, 24, 48 weeks). The primary endpoint was 28-joint Disease Activity Score (DAS28-ESR and DAS28-CRP). The secondary endpoints included American College of Rheumatology (ACR) criteria for 20% and 50% improvement (ACR20/50), Health Assessment Questionnaire Disability Index (HAQ-DI), clinical disease activity index (CDAI), visual analog scale (VAS), Short Form-36 (SF-36) score, Medial Outcomes Study (MOS) sleep scale score, serum erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), tender joint count, swollen joint count, and morning stiffness. The adverse reactions were observed during the treatment.
RESULTS:
After 12 weeks of treatment, DAS28-ESR and DAS28-CRP scores in both groups were lower than before treatment (both P<0.01), while the remission rate of DAS28-ESR and DAS28-CRP and low disease activity of JBP group were higher than those in the placebo group (both P<0.01). JBP demonstrated better efficacy on ACR20 and ACR50 compliance rate at 12 and 48 weeks comparing to placebo (all P<0.05). The CDAI and HAQ-DI score, pain VAS and global VAS change of RA patients and physicians, the serum ESR and CRP levels, and the number of tenderness and swelling joints were lower than before treatment at 4, 8, 12, 24, 48 weeks in both groups (P<0.05 or P<0.01), while the reduction of above indices in the JBP group was more obvious than those in the placebo group at 12 weeks (ESR and CRP, both P<0.05) or at 12 and 48 weeks (all P<0.01). There was no difference in adverse reactions between the 2 groups during treatment (P=0.75).
CONCLUSION
JBP combined with MTX could effectively reduce disease activity in patients with RA in active stage, reduce the symptoms of arthritis, and improve the quality of life, while ensuring safety, reliability, and fewer adverse effects. (Trial Registration: ClinicalTrials.gov, No. NCT02885597).
Humans
;
Arthritis, Rheumatoid/drug therapy*
;
Methotrexate/adverse effects*
;
Female
;
Double-Blind Method
;
Male
;
Middle Aged
;
Treatment Outcome
;
Drugs, Chinese Herbal/adverse effects*
;
Drug Therapy, Combination
;
Adult
;
Antirheumatic Agents/adverse effects*
;
Aged
4.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
5.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
6.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
7.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.
8.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.
9.Changing resistance profiles of Staphylococcus isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yuling XIAO ; Mei KANG ; Yi XIE ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(5):570-580
Objective To investigate the changing distribution and antibiotic resistance profiles of clinical isolates of Staphylococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Staphylococcus according to the unified protocol of CHINET(China Antimicrobial Surveillance Network)using disk diffusion method and commercial automated systems.The CHINET antimicrobial resistance surveillance data from 2015 to 2021 were interpreted according to the 2021 CLSI breakpoints and analyzed using WHONET 5.6.Results During the period from 2015 to 2021,a total of 204,771 nonduplicate strains of Staphylococcus were isolated,including 136,731(66.8%)strains of Staphylococcus aureus and 68,040(33.2%)strains of coagulase-negative Staphylococcus(CNS).The proportions of S.aureus isolates and CNS isolates did not show significant change.S.aureus strains were mainly isolated from respiratory specimens(38.9±5.1)%,wound,pus and secretions(33.6±4.2)%,and blood(11.9±1.5)%.The CNS strains were predominantly isolated from blood(73.6±4.2)%,cerebrospinal fluid(12.1±2.5)%,and pleural effusion and ascites(8.4±2.1)%.S.aureus strains were mainly isolated from the patients in ICU(17.0±7.3)%,outpatient and emergency(11.6±1.7)%,and department of surgery(11.2±0.9)%,whereas CNS strains were primarily isolated from the patients in ICU(32.2±9.7)%,outpatient and emergency(12.8±4.7)%,and department of internal medicine(11.2±1.9)%.The prevalence of methicillin-resistant strains was 32.9%in S.aureus(MRSA)and 74.1%in CNS(MRCNS).Over the 7-year period,the prevalence of MRSA decreased from 42.1%to 29.2%,and the prevalence of MRCNS decreased from 82.1%to 68.2%.MRSA showed higher resistance rates to all the antimicrobial agents tested except trimethoprim-sulfamethoxazole than methicillin-susceptible S.aureus(MSSA).Over the 7-year period,MRSA strains showed decreasing resistance rates to gentamicin,rifampicin,and levofloxacin,MRCNS showed decreasing resistance rates to gentamicin,erythromycin,rifampicin,and trimethoprim-sulfamethoxazole,but increasing resistance rate to levofloxacin.No vancomycin-resistant strains were detected.The prevalence of linezolid-resistant MRCNS increased from 0.2%to 2.3%over the 7-year period.Conclusions Staphylococcus remains the major pathogen among gram-positive bacteria.MRSA and MRCNS were still the principal antibiotic-resistant gram-positive bacteria.No S.aureus isolates were found resistant to vancomycin or linezolid,but linezolid-resistant strains have been detected in MRCNS isolates,which is an issue of concern.
10.Characteristics of Cardiopulmonary Function and Influencing Factors in Patients With Obstructive Sleep Apnea-hypopnea Syndrome Combined With Cardiovascular Disease
Yifan WU ; Minghua XU ; Liu DU ; Yanli GU ; Xue FENG
Chinese Circulation Journal 2024;39(11):1078-1085
Objectives:To observe the exercise tolerance and cardiopulmonary function characteristics of patients with obstructive sleep apnea-hypopnea syndrome (OSAHS) combined with cardiovascular disease,in order to assess the cardiorespiratory reserve and health status of untreated OSAHS,and to provide a clinical evidence for the phase Ⅱ cardiac rehabilitation. Methods:This retrospective analysis included 134 cardiovascular disease patients who attended the Cardiac Rehabilitation Center of Fuwai Hospital,Chinese Academy of Medical Sciences from November 2021 to April 2024 and received home sleep apnea monitoring (HSAT).According to the apnea hypopnea index (AHI),the patients were divided into the non-OSAHS (AHI<5 times/h) group (n=24),the mild-OSAHS (5 times/h ≤AHI<15 times/h) group (n=65),and moderate-to-severe OSAHS (AHI ≥15 times/h) group (n=45),and the body composition,pulmonary function characteristics,exercise tolerance,and ventilatory response to exercise were compared among the three groups. Results:A total of 110 (82.1%) patients had comorbid OSAHS,with a higher proportion of male patients (80.0%).Height,weight,body mass index,lean body mass,skeletal muscle mass,body water content,and basal metabolic rate increased progressively with increasing OSAHS severity in three groups (all P<0.05),while cardiovascular disease comorbidity was similar.Static lung function,exercise tolerance and ventilatory function at maximal exercise were similar between the patients in the mild OSAHS group and the moderate-severe OSAHS group as compared to the non-OSAHS group (all P>0.05).With the increase in the severity of OSAHS,the cardiorespiratory fitness showed a decreasing trend among patients in the three groups,and the forced vital capacity and the maximum vital capacity of patients in the moderate-severe OSAHS group were significantly higher than that of the mild OSAHS group,while peak O2 pulse%pred was significantly lower than that of the mild OSAHS group (all P<0.05).Multivariate analysis showed that the body fat mass (β=0.307,95%CI:0.263-0.823,P<0.001),minute ventilation at rest (β=0.259,95%CI:0.429-1.785,P=0.002) were the independent influencing factors of AHI. Conclusions:The prevalence of OSAHS is high in patients with cardiovascular disease,and patients with moderate-to-severe OSAHS have reduced cardiorespiratory fitness,OSAHS is not associated with additional cardiac impairment and ventilatory function impairment in patients with cardiovascular disease.Weight loss should be the primary rehabilitation goal in patients with OSAHS combined with cardiovascular disease.


Result Analysis
Print
Save
E-mail