1.Improvement effect and mechanism of Wuling San on TGF-β1-induced fibrosis, inflammation, and oxidative stress damage in HK-2 cells.
Jun WU ; Xue-Ning JING ; Fan-Wei MENG ; Xiao-Ni KONG ; Jiu-Wang MIAO ; Cai-Xia ZHANG ; Hai-Lun LI ; Yun HAN
China Journal of Chinese Materia Medica 2025;50(5):1247-1254
This study investigated the effect of Wuling San on transforming growth factor-β1(TGF-β1)-induced fibrosis, inflammation, and oxidative stress in human renal tubular epithelial cells(HK-2) and its mechanism of antioxidant stress injury. HK-2 cells were cultured in vitro and divided into a control group, a TGF-β1 model group, and three treatment groups receiving Wuling San-containing serum at low(2.5%), medium(5.0%), and high(10.0%) doses. TGF-β1 was used to establish the model in all groups except the control group. CCK-8 was used to analyze the effect of different concentrations of Wuling San on the activity of HK-2 cells with or without TGF-β1 stimulation. The expression of key fibrosis molecules, including actin alpha 2(Acta2), collagen type Ⅰ alpha 1 chain(Col1α1), collagen type Ⅲ alpha 1 chain(Col3α1), TIMP metallopeptidase inhibitor 1(Timp1), and fibronectin 1(Fn1), was detected using qPCR. The expression levels of inflammatory cytokines, including tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-8(IL-8), and interleukin-4(IL-4), were measured using ELISA kits. Glutathione peroxidase(GSH-Px), malondialdehyde(MDA), catalase(CAT), and superoxide dismutase(SOD) biochemical kits were used to analyze the effect of Wuling San on TGF-β1-induced oxidative stress injury in HK-2 cells, and the expression of nuclear factor E2-related factor 2(Nrf2), heme oxygenase 1(HO-1), and NAD(P)H quinone oxidoreductase 1(NQO1) was analyzed by qPCR and immunofluorescence. The CCK-8 results indicated that the optimal administration concentrations of Wuling San were 2.5%, 5.0%, and 10.0%. Compared with the control group, the TGF-β1 model group showed significantly increased levels of key fibrosis molecules(Acta2, Col1α1, Col3α1, Timp1, and Fn1) and inflammatory cytokines(TNF-α, IL-1β, IL-6, IL-8, and IL-4). In contrast, the Wuling San administration groups were able to dose-dependently inhibit the expression levels of key fibrosis molecules and inflammatory cytokines compared with the TGF-β1 model group. Wuling San significantly increased the activities of GSH-Px, CAT, and SOD enzymes in TGF-β1-stimulated HK-2 cells and significantly inhibited the level of MDA. Furthermore, compared with the control group, the TGF-β1 model group exhibited a significant reduction in the expression of Nrf2, HO-1, and NQO1 genes and proteins. After Wuling San intervention, the expression of Nrf2, HO-1, and NQO1 genes and proteins was significantly increased. Correlation analysis showed that antioxidant stress enzymes(GSH-Px, CAT, and SOD) and Nrf2 signaling were significantly negatively correlated with key fibrosis molecules and inflammatory cytokines in the TGF-β1-stimulated HK-2 cell model. In conclusion, Wuling San can inhibit TGF-β1-induced fibrosis in HK-2 cells by activating the Nrf2 signaling pathway, improving oxidative stress injury, and reducing inflammation.
Humans
;
Oxidative Stress/drug effects*
;
Transforming Growth Factor beta1/metabolism*
;
Fibrosis/genetics*
;
Cell Line
;
Drugs, Chinese Herbal/pharmacology*
;
Epithelial Cells/immunology*
;
Inflammation/metabolism*
2.Ferulic acid inhibits the progression of T-cell acute lymphoblastic leukemia by regulating PTEN/PI3K/AKT signaling pathway
Jing-Ru LI ; Zhong-Xia LI ; Ning-Ning NIU ; Yuan QIAO ; Yun HAN ; Xue-Rong LIN
Journal of Regional Anatomy and Operative Surgery 2024;33(1):8-13
Objective To explore whether ferulic acid can inhibit the progression of T-cell acute lymphoblastic leukemia in vivo and in vitro by regulating PTEN/PI3K/AKT signaling pathway.Methods The T-cell acute lymphoblastic leukemia Jurkat cells were divided into the control group,the ferulic acid treatment group and the LY294002 treatment group for in vitro experiment.The cells in the control group were given normal culture;cells in the ferulic acid treatment group were given different concentrations(1.25,2.5,5,10,20,40,80,160 μmol/L)of ferulic acid,respectively,and the cell proliferation was detected by CCK-8 method,to screen the experimental concentration;cells in the LY294002 treatment group were given 50 μmol/L PI3K/AKT inhibitor LY294002.The cells proliferation,apoptosis and invasion were detected by clone formation assay,flow cytometry and Transwell assay.The relative expression levels of nuclear protein Ki67,proliferating cell nuclear antigen(PCNA),cleaved caspase-3,cleaved caspase-9,E-cadherin,N-cadherin,Vimentin,PTEN,p-PI3K,PI3K,p-AKT and AKT proteins were detected by Western blot.The nude mice models of transplanted tumors were constructed by 30 male BALB/c nude mice,and they were averagely divided into the normal group and the ferulic acid treatment group for in vivo experiment.The normal group was given normal saline by gavage,while the ferulic acid treatment group was given 75 mg/kg ferulic acid by gavage after inoculating Jurkat cells.The weight and volume changes of transplanted tumors were compared,and the levels of Ki67,cleaved caspase-3/caspase-3,E-cadherin,N-cadherin,PTEN,p-PI3K,PI3K,p-AKT and AKT in tumor tissues were detected.Results In vitro experiment,compared with the control group,the clone formation rate of cells,number of invasion cells,Ki67,PCNA,N-cadherin,Vimentin,p-PI3K/PI3K and p-AKT/AKT in the 5,10,20 μmol/L ferulic acid treatment group and the LY294002 treatment group were significantly decreased(P<0.05),while the apoptosis rate,cleaved caspase-3/caspase-3,cleaved caspase-9/caspase-9,E-cadherin and PTEN were significantly increased(P<0.05).In vivo experiment,compared with the normal group,the weight and volume of tumors were reduced in the ferulic acid treatment group,Ki67,N-cadherin,p-PI3K/PI3K and p-AKT/AKT in tumor tissues were significantly decreased,cleaved caspase-3/caspase-3,E-cadherin and PTEN were significantly increased,with statistically significant differences(P<0.05).Conclusion Ferulic acid can inhibit the proliferation and invasion of T-cell acute lymphoblastic leukemia Jurkat cells in vivo and in vitro,and induce apoptosis,its mechanism may be related to the regulation of PTEN/PI3K/AKT signaling pathway.
3.Discussion of the methodology and implementation steps for assessing the causality of adverse event
Hong FANG ; Shuo-Peng JIA ; Hai-Xue WANG ; Xiao-Jing PEI ; Min LIU ; An-Qi YU ; Ling-Yun ZHOU ; Fang-Fang SHI ; Shu-Jie LU ; Shu-Hang WANG ; Yue YU ; Dan-Dan CUI ; Yu TANG ; Ning LI ; Ze-Huai WEN
The Chinese Journal of Clinical Pharmacology 2024;40(2):299-304
The assessment of adverse drug events is an important basis for clinical safety evaluation and post-marketing risk control of drugs,and its causality assessment is gaining increasing attention.The existing methods for assessing the causal relationship between drugs and the occurrence of adverse reactions can be broadly classified into three categories:global introspective methods,standardized methods,and probabilistic methods.At present,there is no systematic introduction of the operational details of the various methods in the domestic literature.This paper compares representative causality assessment methods in terms of definition and concept,methodological steps,industry evaluation and advantages and disadvantages,clarifies the basic process of determining the causality of adverse drug reactions,and discusses how to further improve the adverse drug reaction monitoring and evaluation system,with a view to providing a reference for drug development and pharmacovigilance work in China.
4.Urine metabolomics study of Psoralea corylifolia in improving learning and memory ability in APP/PS1 mice
Yue QIAO ; Ao XUE ; Yue ZHANG ; Hong-dan XU ; Guang LI ; Ji-hui ZHAO ; Jing HU ; Ning ZHANG
Acta Pharmaceutica Sinica 2024;59(4):1010-1016
Urine nontargeted metabolomics technology was developed for investigating the effect and mechanism of improving learning and memory ability in APP/PS1 mice of
5.Practice of the construction of China hospital research integrity alliance
Zhuojing ZHANG ; Jing XUE ; Wenyi LI ; Jun NING ; Peiwu HU ; Jing YU ; Zhuoqing WANG ; Zheng WANG ; Hua GUO
Chinese Journal of Hospital Administration 2024;40(5):362-366
Research integrity is the foundation for ensuring the sound and orderly development of scientific and technological innovation. As the main battlefield of clinical medical research, hospitals should effectively fulfill their main responsibilities and do a good job in research integrity management. The China Hospital Research Integrity Alliance, consisting of the first batch of 43 hospitals, was established in November 2021. With the aim of " complementary advantages, resource sharing, and collaborative development", the alliance has carried out construction practices from seven aspects: construction mode, cultural system construction, organizational management, institutional construction, publicity and education, early warning and supervision, and technological empowerment. It has achieved the overall improvement of the research integrity construction ability of member units of the alliance, organic linkage between government and medical institutions, and efficient combination of internal and external resources, which can provide reference for the research integrity construction of medical institutions in China.
6.Network Pharmacology Analysis on Mechanism Study of Buyang Huanwu Decoction for"Treating Different Diseases with Same Therapies"in Type 2 Diabetes Mellitus and Alzheimer's Disease
Hui XUE ; Yanming XU ; Jing JIANG ; Xuetong MENG ; Shumeng LIU ; Qian ZHOU ; Xia LEI ; Ning ZHANG
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(9):1364-1375
Objective To explore the mechanism of Buyang Huanwu Decoction for"treating different diseases with same therapies"in type 2 diabetes mellitus(T2DM)and Alzheimer's disease(AD)based on network pharmacology and molecular docking techniques.Methods Firstly,the active ingredients of seven herbs in Buyang Huanwu Decoction were searched and screened by TCMSP,SymMap and other databases,the target prediction of these active ingredients was carried out by PharmMapper.The disease targets of T2DM and AD were collected from OMIM,DrugBank,GeneCards and Disgenet databases.The potential targets of Buyang Huanwu Decoction for"treating different diseases with same therapies"in T2DM and AD were obtained by intersecting with targets of active ingredients and the disease targets.Then STRING database and Cytoscape software were used to construct the PPI network and"herbs-components-targets"network,respectively.The core targets and pharmacodynamic components were screened through network topology analysis.Furthermore,GO functional and KEGG enrichment analysis was performed for potential targets using Metascape database.Finally,AutoDock software was used to verify the molecular docking between the selected components and targets.Results Ninety-four active components of Buyang Huanwu Decoction can act on 342 protein targets,and 100 intersection targets were obtained by comparing with 3 140 AD targets and 1 708 T2DM targets.GO functional enrichment analysis showed that these targets were mainly involved in MAPK cascade-mediated regulation,hormone-mediated signaling pathways,cellular response to lipids,regulation of inflammation response and other biological processes.MAPK,PI3K/Akt,FoxO,AGE/RAGE,insulin resistance,lipid and atherosclerosis,and non-alcoholic fatty liver signaling pathway were significantly enriched in KEGG analysis.PPI and topology analysis of"herbs-components-targets"network were used to screen out 10 core targets such as MAPK8,MAPK14,GSK3B,PPARG,and 10 core pharmacodynamic components such as paeoniflorin,benzoyl paeoniflorin,(+)-catechin.The results of molecular docking showed that these components had strong binding ability to the targets.Conclusion The core components of Buyang Huanwu Decoction,such as paeoniflorin and catechin,may act on PPARG,GSK3B and other key targets,and participate in the regulation of signaling pathways including MAPK and PI3K/Akt,which play a role in"treating different diseases with the same therapies"of T2DM and AD.
7.Serum metabolomics study of Psoraleae Fructus in improving learning and memory ability of APP/PS1 mice.
Jia-Ming GU ; Hui XUE ; Ao XUE ; Jing JIANG ; Fang GENG ; Ji-Hui ZHAO ; Bo YANG ; Ning ZHANG
China Journal of Chinese Materia Medica 2023;48(15):4039-4045
This study aimed to investigate the mechanism of Psoraleae Fructus in improving the learning and memory ability of APP/PS1 mice by serum metabolomics, screen the differential metabolites of Psoraleae Fructus on APP/PS1 mice, and reveal its influence on the metabolic pathway of APP/PS1 mice. Thirty 3-month-old APP/PS1 mice were randomly divided into a model group and a Psoraleae Fructus extract group, and another 15 C57BL/6 mice of the same age were assigned to the blank group. The learning and memory ability of mice was evaluated by the Morris water maze and novel object recognition tests, and metabolomics was used to analyze the metabolites in mouse serum. The results of the Morris water maze test showed that Psoraleae Fructus shortened the escape latency of APP/PS1 mice(P<0.01), and increased the number of platform crossing and residence time in the target quadrant(P<0.01). The results of the novel object recognition test showed that Psoraleae Fructus could improve the novel object recognition index of APP/PS1 mice(P<0.01). Eighteen differential metabolites in serum were screened out by metabolomics, among which the levels of arachidonic acid, tryptophan, and glycerophospholipid decreased after drug administration, while the levels of glutamyltyrosine increased after drug administration. The metabolic pathways involved included arachidonic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism, linoleic acid metabolism, α-linolenic acid metabolism, and glycerolipid metabolism. Therefore, Psoraleae Fructus can improve the learning and memory ability of APP/PS1 mice, and its mechanism may be related to the effects in promoting energy metabolism, reducing oxidative damage, protecting central nervous system, reducing neuroinflammation, and reducing Aβ deposition. This study is expected to provide references for Psoraleae Fructus in the treatment of Alzheimer's disease(AD) and further explain the mechanism of Psoraleae Fructus in the treatment of AD.
Mice
;
Animals
;
Amyloid beta-Protein Precursor/genetics*
;
Mice, Transgenic
;
Arachidonic Acid
;
Tryptophan
;
Mice, Inbred C57BL
;
Alzheimer Disease/genetics*
;
Maze Learning
;
Glycerophospholipids
;
Disease Models, Animal
;
Amyloid beta-Peptides/metabolism*
8.Mechanism of albiflorin in improvement of Alzheimer's disease based on network pharmacology and in vitro experiments.
Hui XUE ; Jing JIANG ; Yue ZHANG ; Xue-Tong MENG ; Ao XUE ; Yue QIAO ; Xia LEI ; Ji-Hui ZHAO ; Ning ZHANG
China Journal of Chinese Materia Medica 2023;48(17):4738-4746
This study aimed to explore the mechanism of albiflorin in the treatment of Alzheimer's disease(AD) based on network pharmacology, molecular docking, and in vitro experiments. Network pharmacology was used to predict the potential targets and pathways of albiflorin against AD, and molecular docking technology was used to verify the binding affinity of albiflorin to key target proteins. Finally, the AD cell model was induced by Aβ_(25-35) in rat pheochromocytoma(PC12) cells and intervened by albiflorin to validate core targets and pathways. The results of network pharmacological analysis showed that albiflorin acted on key targets such as mitogen-activated protein kinase-1(MAPK1 or ERK2), albumin(ALB), epidermal growth factor receptor(EGFR), caspase-3(CASP3), and sodium-dependent serotonin transporter(SLC6A4), and signaling pathways such as MAPK, cAMP, and cGMP-PKG. The results of molecular docking showed that albiflorin had strong binding affinity to MAPK1(ERK2). In vitro experiments showed that compared with the blank group, the model group showed decreased cell viability, decreased expression level of B-cell lymphoma 2(Bcl-2), increased Bcl-2-associated X protein(Bax), and reduced phosphorylation level of extracellular signal-regulated kinase 1/2(ERK1/2) and the relative expression ratio of p-ERK1/2 to ERK1/2. Compared with the model group, the albiflorin group showed potentiated cell viability, up-regulated expression of Bcl-2, down-regulated Bax, and increased phosphorylation level of ERK1/2 and the relative expression ratio of p-ERK1/2 to ERK1/2. These results suggest that the mechanism of albiflorin against AD may be related to its activation of the MAPK/ERK signaling pathway and its inhibition of neuronal apoptosis.
Animals
;
Rats
;
Alzheimer Disease/drug therapy*
;
bcl-2-Associated X Protein
;
Network Pharmacology
;
Molecular Docking Simulation
9.Trichostatin C attenuates TNFα -induced inflammation in endothelial cells by up-regulating Krüppel-like factor 2
Li-juan LEI ; Ming-hua CHEN ; Ying-hong LI ; Xin-hai JIANG ; Wei-zhi WANG ; Li-ping ZHAO ; Chen-yin WANG ; Yu-chuan CHEN ; Yu-yan ZHANG ; Ye-xiang WU ; Shun-wang LI ; Jiang-xue HAN ; Yi-ning LI ; Ren SHENG ; Yu-hao ZHANG ; Jing ZHANG ; Li-yan YU ; Shu-yi SI ; Yan-ni XU
Acta Pharmaceutica Sinica 2023;58(8):2375-2383
Krüppel-like transcription factor 2 (KLF2) plays a key regulatory role in endothelial inflammation, thrombosis, angiogenesis and macrophage inflammation and polarization, and up-regulation of KLF2 expression has the potential to prevent and treatment atherosclerosis. In this study, trichostatin C (TSC) was obtained from the secondary metabolites of rice fermentation of
10.Effects of Rehmanniae Radix and Rehmanniae Radix Praeparata on proteomics and autophagy in mice with type 2 diabetes mellitus induced by high-fat diet coupled with streptozotocin.
Jing-Ning YAN ; Xiao-Qin LIU ; Xiang-Long MENG ; Ke-le REN ; Xue-Min WU ; Hao ZHANG ; Hai-Qin WANG ; Hong-Liang WANG ; Qi SHENG ; Bin LI ; Ding-Bang ZHANG ; Hong-Zhou CHEN ; Fa-Yun ZHANG ; Ming-Hao LI ; Shuo-Sheng ZHANG
China Journal of Chinese Materia Medica 2023;48(6):1535-1545
To compare the pancreatic proteomics and autophagy between Rehmanniae Radix-and Rehmanniae Radix Praeparata-treated mice with type 2 diabetes mellitus(T2DM). The T2DM mouse model was established by high-fat diet coupled with streptozotocin(STZ, intraperitoneal injection, 100 mg·kg~(-1), once a day for three consecutive days). The mice were then randomly assigned into a control group, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) catalpol groups, low-(5 g·kg~(-1)) and high-dose(15 g·kg~(-1)) Rehmanniae Radix Praeparata groups, low-(150 mg·kg~(-1)) and high-dose(300 mg·kg~(-1)) 5-hydroxymethyl furfuraldehyde(5-HMF) groups, and a metformin(250 mg·kg~(-1)) group. In addition, a normal group was also set and each group included 8 mice. The pancreas was collected after four weeks of administration and proteomics tools were employed to study the effects of Rehmanniae Radix and Rehmanniae Radix Praeparata on protein expression in the pancreas of T2DM mice. The expression levels of proteins involved in autophagy, inflammation, and oxidative stress response in the pancreatic tissues of T2DM mice were determined by western blotting, immunohistochemical assay, and transmission electron microscopy. The results showed that the differential proteins between the model group and Rehmanniae Radix/Rehmanniae Radix Prae-parata group were enriched in 7 KEGG pathways, such as autophagy-animal, which indicated that the 7 pathways may be associated with T2DM. Compared with the control group, drug administration significantly up-regulated the expression levels of beclin1 and phosphorylated mammalian target of rapamycin(p-mTOR)/mTOR and down-regulated those of the inflammation indicators, Toll-like receptor-4(TLR4) and Nod-like receptor protein 3(NLRP3), in the pancreas of T2DM mice, and Rehmanniae Radix showed better performance. In addition, the expression levels of inducible nitric oxide synthase(iNOS), nuclear factor erythroid 2-related factor 2(Nrf2), and heine oxygenase-1(HO-1) in the pancreas of T2DM mice were down-regulated after drug administration, and Rehmanniae Radix Praeparata demonstrated better performance. The results indicate that both Rehmanniae Radix and Rehmanniae Radix Praeparata can alleviate the inflammatory symptoms, reduce oxidative stress response, and increase the autophagy level in the pancreas of T2DM mice, while they exert the effect on different autophagy pathways.
Mice
;
Animals
;
Diabetes Mellitus, Type 2/genetics*
;
Streptozocin/pharmacology*
;
Diet, High-Fat/adverse effects*
;
Proteomics
;
Inflammation
;
TOR Serine-Threonine Kinases
;
Autophagy
;
Mammals

Result Analysis
Print
Save
E-mail