1.Research progress of antifungal drugs from natural sources
Shao-jie CHU ; Yan ZHENG ; Shuang-shuang SU ; Xue-song WU ; Hong YAN ; Shao-xin CHEN ; Hong-bo WANG
Acta Pharmaceutica Sinica 2025;60(1):48-57
As the number of patients with compromised immune function increases and fungal resistance develops, so does the risk of contracting deadly fungi in humans. Both fungi and humans are eukaryotes, so identifying unique targets for antifungal drug development is difficult. In addition, the existing antifungal drugs are limited by toxicity, drug interaction and drug resistance in practical application, which leads to the increasing incidence and fatal rate of fungal infections. Therefore, it is urgent to develop new antifungal drugs. The semi-synthetic technology using microbial fermentation products from natural sources as lead compounds has become the most used method in structural modification of antifungal drugs due to its advantages of few reaction steps and easy operation. This paper will introduce the current status of natural antifungal drugs in clinical use, as well as the latest progress in the research and development of new semi-synthetic antifungal drugs, and summarize their mechanism of action, structural modifications, advantages and disadvantages, so as to provide reference for the subsequent development of new antifungal drugs.
2.Serological and molecular biological analysis of a rare Dc- variant individual
Xue TIAN ; Hua XU ; Sha YANG ; Suili LUO ; Qinqin ZUO ; Liangzi ZHANG ; Xiaoyue CHU ; Jin WANG ; Dazhou WU ; Na FENG
Chinese Journal of Blood Transfusion 2025;38(8):1101-1106
Objective: To reveal the molecular biological mechanism of a rare Dc-variant individual using PacBio third-generation sequencing technology. Methods: ABO and Rh blood type identification, DAT, unexpected antibody screening and D antigen enhancement test were conducted by serological testing. The absorption-elution test was used to detect the e antigen. RHCE gene typing was performed by PCR-SSP, and the 1-10 exons of RHCE were sequenced by Sanger sequencing. The full-length sequences of RHCE, RHD and RHAG were detected by PacBio third-generation sequencing technology. Results: Serological findings: Blood type O, Dc-phenotype, DAT negative, unexpected antibody screening negative; enhanced D antigen expression; no detection of e antigen in the absorption-elution test. PCR-SSP genotyping indicated the presence of only the RHCE
c allele. Sanger sequencing results: Exons 5-9 of RHCE were deleted, exon 1 had a heterozygous mutation at c. 48G/C, and exon 2 had five heterozygous mutations at c. 150C/T, c. 178C/A, c. 201A/G, c. 203A/G and c. 307C/T. Third-generation sequencing results: RHCE genotype was RHCE
02N. 08/RHCE-D(5-9)-CE; RHD genotype was RHD
01/RHD
01; RHAG genotype was RHAG
01/RHAG
01 (c. 808G>A and c. 861G>A). Conclusion: This Dc-individual carries the allele RHCE
02N. 08 and the novel allele RHCE-D(5-9)-CE. The findings of this study provide data support and a theoretical basis for elucidating the molecular mechanisms underlying RhCE deficiency phenotypes.
3.Comparison of treatment regimens for unresectable stage III epidermal growth factor receptor ( EGFR ) mutant non-small cell lung cancer.
Xin DAI ; Qian XU ; Lei SHENG ; Xue ZHANG ; Miao HUANG ; Song LI ; Kai HUANG ; Jiahui CHU ; Jian WANG ; Jisheng LI ; Yanguo LIU ; Jianyuan ZHOU ; Shulun NIE ; Lian LIU
Chinese Medical Journal 2025;138(14):1687-1695
BACKGROUND:
Durvalumab after chemoradiotherapy (CRT) failed to bring survival benefits to patients with epidermal growth factor receptor ( EGFR ) mutations in PACIFIC study (evaluating durvalumab in patients with stage III, unresectable NSCLC who did not have disease progression after concurrent chemoradiotherapy). We aimed to explore whether locally advanced inoperable patients with EGFR mutations benefit from tyrosine kinase inhibitors (TKIs) and the optimal treatment regimen.
METHODS:
We searched the PubMed, Embase, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases from inception to December 31, 2022 and performed a meta-analysis based on a Bayesian framework, with progression-free survival (PFS) and overall survival (OS) as the primary endpoints.
RESULTS:
A total of 1156 patients were identified in 16 studies that included 6 treatment measures, including CRT, CRT followed by durvalumab (CRT-Durva), TKI monotherapy, radiotherapy combined with TKI (RT-TKI), CRT combined with TKI (CRT-TKI), and TKI combined with durvalumab (TKI-Durva). The PFS of patients treated with TKI-containing regimens was significantly longer than that of patients treated with TKI-free regimens (hazard ratio [HR] = 0.37, 95% confidence interval [CI], 0.20-0.66). The PFS of TKI monotherapy was significantly longer than that of CRT (HR = 0.66, 95% CI, 0.50-0.87) but shorter than RT-TKI (HR = 1.78, 95% CI, 1.17-2.67). Furthermore, the PFS of RT-TKI or CRT-TKI were both significantly longer than that of CRT or CRT-Durva. RT-TKI ranked first in the Bayesian ranking, with the longest OS (60.8 months, 95% CI = 37.2-84.3 months) and the longest PFS (21.5 months, 95% CI, 15.4-27.5 months) in integrated analysis.
CONCLUSIONS:
For unresectable stage III EGFR mutant NSCLC, RT and TKI are both essential. Based on the current evidence, RT-TKI brings a superior survival advantage, while CRT-TKI needs further estimation. Large randomized clinical trials are urgently needed to explore the appropriate application sequences of TKI, radiotherapy, and chemotherapy.
REGISTRATION
PROSPERO; https://www.crd.york.ac.uk/PROSPERO/ ; No. CRD42022298490.
Humans
;
Carcinoma, Non-Small-Cell Lung/therapy*
;
ErbB Receptors/genetics*
;
Lung Neoplasms/drug therapy*
;
Mutation/genetics*
;
Protein Kinase Inhibitors/therapeutic use*
;
Chemoradiotherapy
;
Antibodies, Monoclonal/therapeutic use*
4.Studies on the best production mode of traditional Chinese medicine driven by artificial intelligence and its engineering application.
Zheng LI ; Ning-Tao CHENG ; Xiao-Ping ZHAO ; Yi TAO ; Qi-Long XUE ; Xing-Chu GONG ; Yang YU ; Jie-Qiang ZHU ; Yi WANG
China Journal of Chinese Materia Medica 2025;50(12):3197-3203
The traditional Chinese medicine(TCM) industry is a crucial part of China's pharmaceutical sector and plays a strategic role in ensuring public health and promoting economic and social development. In response to the practical demand for high-quality development of the TCM industry, this paper focused on the bottlenecks encountered during the digital and intelligent transformation of TCM production systems. Specifically, it explored technical strategies and methodologies for constructing the best TCM production mode. An innovative artificial intelligence(AI)-centered technical architecture for TCM production was proposed, focusing on key aspects of production management including process modeling, state evaluation, and decision optimization. Furthermore, a series of critical technologies were developed to realize the best TCM production mode. Finally, a novel AI-driven TCM production mode characterized by a closed-loop system of "measurement-modeling-decision-execution" was presented through engineering case studies. This study is expected to provide a technological pathway for developing new quality productive forces within the TCM industry.
Artificial Intelligence
;
Drugs, Chinese Herbal
;
Medicine, Chinese Traditional/methods*
;
Humans
5.YOLOX-SwinT algorithm improves the accuracy of AO/OTA classification of intertrochanteric fractures by orthopedic trauma surgeons.
Xue-Si LIU ; Rui NIE ; Ao-Wen DUAN ; Li YANG ; Xiang LI ; Le-Tian ZHANG ; Guang-Kuo GUO ; Qing-Shan GUO ; Dong-Chu ZHAO ; Yang LI ; He-Hua ZHANG
Chinese Journal of Traumatology 2025;28(1):69-75
PURPOSE:
Intertrochanteric fracture (ITF) classification is crucial for surgical decision-making. However, orthopedic trauma surgeons have shown lower accuracy in ITF classification than expected. The objective of this study was to utilize an artificial intelligence (AI) method to improve the accuracy of ITF classification.
METHODS:
We trained a network called YOLOX-SwinT, which is based on the You Only Look Once X (YOLOX) object detection network with Swin Transformer (SwinT) as the backbone architecture, using 762 radiographic ITF examinations as the training set. Subsequently, we recruited 5 senior orthopedic trauma surgeons (SOTS) and 5 junior orthopedic trauma surgeons (JOTS) to classify the 85 original images in the test set, as well as the images with the prediction results of the network model in sequence. Statistical analysis was performed using the SPSS 20.0 (IBM Corp., Armonk, NY, USA) to compare the differences among the SOTS, JOTS, SOTS + AI, JOTS + AI, SOTS + JOTS, and SOTS + JOTS + AI groups. All images were classified according to the AO/OTA 2018 classification system by 2 experienced trauma surgeons and verified by another expert in this field. Based on the actual clinical needs, after discussion, we integrated 8 subgroups into 5 new subgroups, and the dataset was divided into training, validation, and test sets by the ratio of 8:1:1.
RESULTS:
The mean average precision at the intersection over union (IoU) of 0.5 (mAP50) for subgroup detection reached 90.29%. The classification accuracy values of SOTS, JOTS, SOTS + AI, and JOTS + AI groups were 56.24% ± 4.02%, 35.29% ± 18.07%, 79.53% ± 7.14%, and 71.53% ± 5.22%, respectively. The paired t-test results showed that the difference between the SOTS and SOTS + AI groups was statistically significant, as well as the difference between the JOTS and JOTS + AI groups, and the SOTS + JOTS and SOTS + JOTS + AI groups. Moreover, the difference between the SOTS + JOTS and SOTS + JOTS + AI groups in each subgroup was statistically significant, with all p < 0.05. The independent samples t-test results showed that the difference between the SOTS and JOTS groups was statistically significant, while the difference between the SOTS + AI and JOTS + AI groups was not statistically significant. With the assistance of AI, the subgroup classification accuracy of both SOTS and JOTS was significantly improved, and JOTS achieved the same level as SOTS.
CONCLUSION
In conclusion, the YOLOX-SwinT network algorithm enhances the accuracy of AO/OTA subgroups classification of ITF by orthopedic trauma surgeons.
Humans
;
Hip Fractures/diagnostic imaging*
;
Orthopedic Surgeons
;
Algorithms
;
Artificial Intelligence
7.Evolution and genetic variation of HA and NA genes of H1N1 influenza virus in Shanghai, 2024
Lufang JIANG ; Wei CHU ; Xuefei QIAO ; Pan SUN ; Senmiao DENG ; Yuxi WANG ; Xue ZHAO ; Jiasheng XIONG ; Xihong LYU ; Linjuan DONG ; Yaxu ZHENG ; Yinzi CHEN ; Chenyan JIANG ; Chenglong XIONG ; Jian CHEN
Shanghai Journal of Preventive Medicine 2025;37(9):719-724
ObjectiveTo analyze the evolutionary characteristics and genetic variations of the HA (hemagglutinin) and NA (neuraminidase) genes of influenza A(H1N1) viruses in Shanghai during 2024, to investigate their transmission patterns, and to evaluate their potential impact on vaccine effectiveness. MethodsFrom January to October 2024, throat swab specimens were collected from influenza like illness (ILI) patients at 4 hospitals in Shanghai. Real-time fluorescence ploymerase chain reaction (RT-PCR) was used for virus detection and isolation of H1N1 influenza viruses. Forty influenza A(H1N1) virus strains were sequenced using Illumina NovaSeq 6000 platform, followed by phylogenetic analyses, genetic distance analysis, and amino acid variation analyses of HA and NA genes. ResultsPhylogenetic tree of the HA and NA genes revealed that the 40 influenza A(H1N1) virus strains circulating in Shanghai in 2024 exhibited no significant geographic clustering, with a broad origin of strains and complex transmission chains. Genetic distance analyses demonstrated that the average intra-group genetic distances of HA and NA genes among the Shanghai strains were 0.005 1±0.000 6 and 0.004 6±0.000 6, respectively, which were comparable to or higher than those observed in global surveillance strains. Both HA and NA genes displayed frequent mutations. Compared to the 2023‒2024 and 2024‒2025 Northern Hemisphere A(H1N1) vaccine strains (WHO-recommended), the HA proteins of 40 Shanghai strains exhibited amino acid substitutions at positions 120, 137, 142, 169, 216, 223, 260, 277, 356 and 451, with critical mutations at positions 137 and 142 located within the Ca2 antigenic determinant. Furthermore, mutations in the NA protein were observed at positions 13, 50, 200, 257, 264, 339 and 382. ConclusionThe genetic background of the 2024 Shanghai influenza A(H1N1) virus strains is complex and diverse, and antigenic variation may affect vaccine effectiveness. Therefore, it is recommended to enhance genomic surveillance of influenza viruses, evaluate vaccine suitability, and implement more targeted prevention and control strategies against imported influenza viruses.
8.Analysis of the chemical constituents of Maxing Shigan decoction by UPLC-Q-TOF/MS
Xue ZHAO ; Yanqiu GU ; Haowen CHU ; Caisheng WU ; Gao LI ; Xiaofei CHEN
Journal of Pharmaceutical Practice and Service 2025;43(11):548-554
Objective To analyze chemical constituents of compound Maxing Shigan decoction by ultra-high perfor-mance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS). Methods The separation was performed on a UPLC BEH C18 column (2.1 mm×100 mm, 2.5 µm),with a gradient elution applying 0.1% aqueous formic acid solution and 0.1% formic acid acetonitrile as a mobile phase. The column temperature was 40 °C. The flow rate was 0.4 ml/min and the analysis time was 15 min. Mass spectrometry (MS) data were collected in both positive and negative ESI ion modes. Results Through UPLC-QTOF/MS analysis and reference validation, a total of 59 chemical components in Maxing Shigan decoction were identified. Conclusion An ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) method was established to identify the chemical components of Maxing Shigan decoction. This method is simple, efficient, sensitive and accurate, and provides a basis for the elucidation of the pharmacodynamic material basis and mechanism of Maxing Shigan decoction. It can provide data reference for the optimization of the compatibility of traditional Chinese medicine in the treatment of COVID-19.
9.Study on effect of Wumei Pill on apoptosis of colon cells in rats with ulcerative colitis and its mechanism by regulating miR-146a
Chinese Journal of Immunology 2024;40(3):551-555
Objective:To investigate effect of Wumei Pill on colon cell apoptosis in ulcerative colitis(UC)rats by regulating miR-146a and its mechanism.Methods:A total of 50 SD rats were selected,with 10 rats in each group,and divided into control group,model group,Wumei Pill low,medium and high doses groups.Transfected with anti-miR-NC,anti-miR-146a,miR-NC,miR-146a as anti-miR-NC group,anti-miR-146a group,Wumei Pill+miR-NC group,Wumei Pill+miR-146a group.CCK-8 was used to de-tect cell proliferation;flow cytometry was used to detect cell apoptosis;RT-qPCR was used to detect cell miR-146a expression;ELI-SA was used to detect cell IL-1β and IL-13 contents;Western blot was used to detect expressions of B-cell lymphoma 2(Bcl-2)and Bax proteins.Results:Compared with control group,cell survival rate,Bcl-2 protein expression in model group were decreased,while apoptosis rate,Bax protein expression,IL-1β,IL-13 contents and miR-146a expression were increased(P<0.05).Compared with model group,Wumei Pill significantly increased cell survival rate and Bcl-2 protein expression,decreased cell apoptosis rate,Bax protein expression,IL-1β,IL-13 contents and miR-146a expression(P<0.05).Inhibition of miR-146a increased cell survival rate,Bcl-2 protein expression,decreased cell apoptosis rate,IL-1β,IL-13 contents and Bax protein expression(P<0.05).Overexpression of miR-146a reversed effects of Wumei Pills on proliferation and apoptosis of colon cells in UC rats.Conclusion:Wumei Pill can reduce apoptosis of colon cells in UC rats by up-regulating expression of miR-146a.
10.Atrial fibrillation detection using millimeter-wave radar
Hengji ZHOU ; Yihan YANG ; Yuanhui HU ; Yuguang CHU ; Xintian SHOU ; Yaping YOU ; Wenjing XUE ; Shaowei FAN ; Yong WANG ; Huiliang SHEN
Chinese Journal of Medical Physics 2024;41(1):81-87
A novel technology is proposed for non-contact and real-time detection of atrial fibrillation using millimeter-wave radar.A 60 GHz PCR millimeter wave radar is used to continuously detect the chest echo signal of the subject.After signal acquisition,I-Q signal is generated through I-Q demodulation,and the signal phase information is extracted using effective points phase trend evaluation for obtaining the signals from oscillations in the chest wall,from which the respiratory signals and cardiac signals are extracted through digital filtering for the analysis of cardiac movement.Whether the atrial fibrillation occurs or not is determined by the characteristics of atrial fibrillation wave in the time domain.The effective points phase trend evaluation for extracting more accurate signal phase information and the time-domain method for real-time atrial fibrillation detection are the innovations of the study.The experimental results show that the proposed method achieves a detection accuracy of 99.2%in clinic.

Result Analysis
Print
Save
E-mail