1.Strategies for Building an Artificial Intelligence-Empowered Trusted Federated Evidence-Based Analysis Platform for Spleen-Stomach Diseases in Traditional Chinese Medicine
Bin WANG ; Huiying ZHUANG ; Zhitao MAN ; Lifeng REN ; Chang HE ; Chen WU ; Xulei HU ; Xiaoxiao WEN ; Chenggong XIE ; Xudong TANG
Journal of Traditional Chinese Medicine 2026;67(1):95-102
This paper outlines the development of artificial intelligence (AI) and its applications in traditional Chinese medicine (TCM) research, and elucidates the roles and advantages of large language models, knowledge graphs, and natural language processing in advancing syndrome identification, prescription generation, and mechanism exploration. Using spleen-stomach diseases as an example, it demonstrates the empowering effects of AI in classical literature mining, precise clinical syndrome differentiation, efficacy and safety prediction, and intelligent education, highlighting an upgraded research paradigm that evolves from data-driven and knowledge-driven approaches to intelligence-driven models. To address challenges related to privacy protection and regulatory compliance in cross-institutional data collaboration, a "trusted federated evidence-based analysis platform for TCM spleen-stomach diseases" is proposed, integrating blockchain-based smart contracts, federated learning, and secure multi-party computation. The deep integration of AI with privacy-preserving computing is reshaping research and clinical practice in TCM spleen-stomach diseases, providing feasible pathways and a technical framework for building a high-quality, trustworthy TCM big-data ecosystem and achieving precision syndrome differentiation.
2.The application of surgical robots in head and neck tumors.
Xiaoming HUANG ; Qingqing HE ; Dan WANG ; Jiqi YAN ; Yu WANG ; Xuekui LIU ; Chuanming ZHENG ; Yan XU ; Yanxia BAI ; Chao LI ; Ronghao SUN ; Xudong WANG ; Mingliang XIANG ; Yan WANG ; Xiang LU ; Lei TAO ; Ming SONG ; Qinlong LIANG ; Xiaomeng ZHANG ; Yuan HU ; Renhui CHEN ; Zhaohui LIU ; Faya LIANG ; Ping HAN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(11):1001-1008
3.From 2D to 3D: transforming malignant bone tumor research with advanced culture models.
Zhengcheng HE ; Haitao HUANG ; Jiale FANG ; Huiping LIU ; Xudong YAO ; Hongwei WU
Journal of Zhejiang University. Science. B 2025;26(11):1059-1075
Osteosarcoma (OS), chondrosarcoma (CS), and Ewing sarcoma (ES) represent primary malignant bone tumors and pose significant challenges in oncology research and clinical management. Conventional research methods, such as two-dimensional (2D) cultured tumor cells and animal models, have limitations in recapitulating the complex tumor microenvironment (TME) and often fail to translate into effective clinical treatments. The advancement of three-dimensional (3D) culture technology has revolutionized the field by enabling the development of in vitro constructed bone tumor models that closely mimic the in vivo TME. These models provide powerful tools for investigating tumor biology, assessing therapeutic responses, and advancing personalized medicine. This comprehensive review summarizes the recent advancements in research on 3D tumor models constructed in vitro for OS, CS, and ES. We discuss the various techniques employed in model construction, their applications, and the challenges and future directions in this field. The integration of advanced technologies and the incorporation of additional cell types hold promise for the development of more sophisticated and physiologically relevant models. As research in this field continues to evolve, we anticipate that these models will play an increasingly crucial role in unraveling the complexities of malignant bone tumors and accelerating the development of novel therapeutic strategies.
Bone Neoplasms/pathology*
;
Humans
;
Osteosarcoma/pathology*
;
Tumor Microenvironment
;
Sarcoma, Ewing/pathology*
;
Chondrosarcoma/pathology*
;
Animals
;
Cell Culture Techniques/methods*
;
Cell Culture Techniques, Three Dimensional/methods*
;
Cell Line, Tumor
4.Expert consensus on orthodontic treatment of protrusive facial deformities.
Jie PAN ; Yun LU ; Anqi LIU ; Xuedong WANG ; Yu WANG ; Shiqiang GONG ; Bing FANG ; Hong HE ; Yuxing BAI ; Lin WANG ; Zuolin JIN ; Weiran LI ; Lili CHEN ; Min HU ; Jinlin SONG ; Yang CAO ; Jun WANG ; Jin FANG ; Jiejun SHI ; Yuxia HOU ; Xudong WANG ; Jing MAO ; Chenchen ZHOU ; Yan LIU ; Yuehua LIU
International Journal of Oral Science 2025;17(1):5-5
Protrusive facial deformities, characterized by the forward displacement of the teeth and/or jaws beyond the normal range, affect a considerable portion of the population. The manifestations and morphological mechanisms of protrusive facial deformities are complex and diverse, requiring orthodontists to possess a high level of theoretical knowledge and practical experience in the relevant orthodontic field. To further optimize the correction of protrusive facial deformities, this consensus proposes that the morphological mechanisms and diagnosis of protrusive facial deformities should be analyzed and judged from multiple dimensions and factors to accurately formulate treatment plans. It emphasizes the use of orthodontic strategies, including jaw growth modification, tooth extraction or non-extraction for anterior teeth retraction, and maxillofacial vertical control. These strategies aim to reduce anterior teeth and lip protrusion, increase chin prominence, harmonize nasolabial and chin-lip relationships, and improve the facial profile of patients with protrusive facial deformities. For severe skeletal protrusive facial deformities, orthodontic-orthognathic combined treatment may be suggested. This consensus summarizes the theoretical knowledge and clinical experience of numerous renowned oral experts nationwide, offering reference strategies for the correction of protrusive facial deformities.
Humans
;
Orthodontics, Corrective/methods*
;
Consensus
;
Malocclusion/therapy*
;
Patient Care Planning
;
Cephalometry
5.Expert consensus on early orthodontic treatment of class III malocclusion.
Xin ZHOU ; Si CHEN ; Chenchen ZHOU ; Zuolin JIN ; Hong HE ; Yuxing BAI ; Weiran LI ; Jun WANG ; Min HU ; Yang CAO ; Yuehua LIU ; Bin YAN ; Jiejun SHI ; Jie GUO ; Zhihua LI ; Wensheng MA ; Yi LIU ; Huang LI ; Yanqin LU ; Liling REN ; Rui ZOU ; Linyu XU ; Jiangtian HU ; Xiuping WU ; Shuxia CUI ; Lulu XU ; Xudong WANG ; Songsong ZHU ; Li HU ; Qingming TANG ; Jinlin SONG ; Bing FANG ; Lili CHEN
International Journal of Oral Science 2025;17(1):20-20
The prevalence of Class III malocclusion varies among different countries and regions. The populations from Southeast Asian countries (Chinese and Malaysian) showed the highest prevalence rate of 15.8%, which can seriously affect oral function, facial appearance, and mental health. As anterior crossbite tends to worsen with growth, early orthodontic treatment can harness growth potential to normalize maxillofacial development or reduce skeletal malformation severity, thereby reducing the difficulty and shortening the treatment cycle of later-stage treatment. This is beneficial for the physical and mental growth of children. Therefore, early orthodontic treatment for Class III malocclusion is particularly important. Determining the optimal timing for early orthodontic treatment requires a comprehensive assessment of clinical manifestations, dental age, and skeletal age, and can lead to better results with less effort. Currently, standardized treatment guidelines for early orthodontic treatment of Class III malocclusion are lacking. This review provides a comprehensive summary of the etiology, clinical manifestations, classification, and early orthodontic techniques for Class III malocclusion, along with systematic discussions on selecting early treatment plans. The purpose of this expert consensus is to standardize clinical practices and improve the treatment outcomes of Class III malocclusion through early orthodontic treatment.
Humans
;
Malocclusion, Angle Class III/classification*
;
Orthodontics, Corrective/methods*
;
Consensus
;
Child
6.Pharmacological modulation of mitochondrial function as novel strategies for treating intestinal inflammatory diseases and colorectal cancer.
Boya WANG ; Xinrui GUO ; Lanhui QIN ; Liheng HE ; Jingnan LI ; Xudong JIN ; Dapeng CHEN ; Guangbo GE
Journal of Pharmaceutical Analysis 2025;15(4):101074-101074
Inflammatory bowel disease (IBD) is a chronic and recurrent intestinal disease, and has become a major global health issue. Individuals with IBD face an elevated risk of developing colorectal cancer (CRC), and recent studies have indicated that mitochondrial dysfunction plays a pivotal role in the pathogenesis of both IBD and CRC. This review covers the pathogenesis of IBD and CRC, focusing on mitochondrial dysfunction, and explores pharmacological targets and strategies for addressing both conditions by modulating mitochondrial function. Additionally, recent advancements in the pharmacological modulation of mitochondrial dysfunction for treating IBD and CRC, encompassing mitochondrial damage, release of mitochondrial DNA (mtDNA), and impairment of mitophagy, are thoroughly summarized. The review also provides a systematic overview of natural compounds (such as flavonoids, alkaloids, and diterpenoids), Chinese medicines, and intestinal microbiota, which can alleviate IBD and attenuate the progression of CRC by modulating mitochondrial function. In the future, it will be imperative to develop more practical methodologies for real-time monitoring and accurate detection of mitochondrial function, which will greatly aid scientists in identifying more effective agents for treating IBD and CRC through modulation of mitochondrial function.
7.Improvement mechanism study of kushenol F on ulcerative colitis mice by regulating gut microbiota and immune response
Xudong HE ; Chengzhu SONG ; Haoyu NI ; Yunkai HU ; Min LI ; Dajun CHEN ; Wentao SU ; Jie YU ; Xingxin YANG
China Pharmacy 2024;35(17):2088-2095
OBJECTIVE To explore the action mechanism of kushenol F (KSCF) in treating ulcerative colitis (UC) in mice. METHODS The potential targets of KSCF intervening in UC were predicted with network pharmacology and molecular docking. C57BL/6J mice were randomly divided by body weight into model group, positive control group (sulfasalazine, 703 mg/kg), KSCF group (100 mg/kg), and normal group, with 6 mice per group. The UC model of mice was induced by dextran sulfate sodium solution. During the modeling period, the mice were given relevant medicine intragastrically, once a day, for 7 consecutive days. After the last administration, the disease activity index (DAI) of the mice was scored; the length of the mice’s colon was measured; pathological changes in the colon tissue of mice were observed; the levels of lipopolysaccharide (LPS) in serum, myeloperoxidase (MPO), nitric oxide (NO) and superoxide dismutase (SOD) in the colon were detected in mice; the expression levels of occludin and ZO-1 in colon tissue of mice were detected; the proportions of CD3+T, CD4+T, and CD8+T lymphocytes in the spleen and the ratio of CD4+/CD8+ were detected; changes in colonic microbiota were analyzed by 16S rDNA sequencing. RESULTS Results of network pharmacology indicated that KSCF may treat UC by regulating signaling pathways such as phosphatidylinositol-3 kinase/protein kinase B (PI3K/AKT) and nuclear factor kappa B (NF- κB). Molecular docking results showed that KSCF bound most stably with NF-κB p65 protein. Animal experiment results demonstrated that, compared with the model group, the pathological characteristics of colon tissue in mice were improved in KSCF group. DAI scores, serum levels of LPS, the levels of MPO,NF-κB p65 phosphorylation and NLRP3 protein expression in the colon, and the proportion of CD8+T lymphocytes in the spleen were reduced significantly (P<0.05). Body weight, SOD levels, expression levels of occludin and ZO-1 in the colon, proportions of CD3+T and CD4+T lymphocytes, and the CD4+/CD8+ ratio in the spleen were significantly increased (P<0.05); the abundance of Firmicutes, Actinobacteria, Akkermansia, and Lactobacillus genera were increased, while Proteobacteria decreased; the microbial community structure tended towards that of the normal group. CONCLUSIONS KSCF alleviates UC by restoring intestinal microbial imbalance, enhancing immune response, and inhibiting colonic inflammatory responses, thereby improving intestinal barrier integrity.
8.Study on Acute Toxicology and Intervention Effect of Panacis Majoris Rhizoma on Chronic Pharyngitis Rat Model
Xudong HE ; Lianli ZHOU ; Lankun YANG ; Yuxuan TAO ; Zhibo LIU ; Wenbo WANG ; Siqi SUN ; Jie YU ; Xingxin YANG
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(1):10-16
Objective To investigate the acute toxicology and intervention effect of Panacis Majoris Rhizoma on rats with chronic pharyngitis.Methods A single,maximum dose of Panacis Majoris Rhizoma(74.4 g·kg-1)was administered to Kunming mice to evaluate its toxicity,involving the assessment of the survival status of the mice,organ indices,morphological changes in major organs,blood routine,and biochemical indicators.SD rats were randomly divided into the control group,model group,prednisone group(6.25 mg·kg-1),and low-,medium-,and high-dose Panacis Majoris Rhizoma groups(0.58,1.16,and 2.32 g·kg-1).All rats received the corresponding drugs(or normal saline)via intragastric administration once daily for a duration of 30 days.Except the control group,chronic pharyngitis was induced in rats of the other groups by using β-hemolytic streptococcus.Following euthanasia,serum inflammatory levels of interleukin-6(IL-6),cyclooxygenase-2(COX-2),interleukin-1β(IL-1β),intercellular adhesion molecule-1(ICAM-1),C-reactive protein(CRP),tumor necrosis factor(TNF-α),monocyte chemoattractant protein-1(MCP-1),and prostaglandin E2(PGE2)were measured.Additionally,pharyngeal tissues were stained with HE and pathological characteristics were observed.Results Toxicological studies have demonstrated that the administration of Panacis Majoris Rhizoma resulted in significant increase in plasma alanine transaminase levels and spleen index of mice,along with corresponding tissue pathological alterations.Nevertheless,no noteworthy pathological changes were observed in other organs,and there were no notable changes in blood routine and plasma biochemical indicators.Pharmacodynamic investigations have revealed that Panacis Maioris Rhizoma effectively reduces the serum levels of inflammatory factors and improves pathological changes in pharyngeal tissues.Conclusion Panacis Maioris Rhizoma alleviated β-hemolytic streptococcus-induced CP by inhibiting inflammatory responses,and may show potential toxicity to the spleen.
9.Exploration the Immune Regulatory Mechanism of Hedysari Radix Based on Network Pharmacology,Molecular Dynamics,and UPLC-MS/MS
Xudong LUO ; Xinrong LI ; Chengyi LI ; Peng QI ; Tingting LIANG ; Xiaoli FENG ; Xu LI ; Jungang HE ; Xiaocheng WEI ; Ruijuan ZHOU ; Xinming XIE
Traditional Chinese Drug Research & Clinical Pharmacology 2024;35(3):376-383
Objective To predict the core targets and action pathways of Hedysari Radix based on UPLC-MS/MS and network pharmacology methods,and to verify the results of network pharmacology by molecular docking and molecular dynamics techniques.This article aims to investigate immune regulation mechanism of effective components absorbed into blood from Hedysari Radix.Methods Qualitative quantification of effective components absorbed into blood from Hedysari Radix were operated by using UPLC-MS/MS technique.The corresponding targets of effective components absorbed into blood from Hedysari Radix were screened by TCMSP and HERB databases.Targets of immune-related disease were obtained through DisGeNET,OMIM,TTD,and MalaCards databases.The network of"components absorbed into blood from Hedysari Radix-immune-related diseases"was then constructed.GO and KEGG enrichment analysis and mapped the PPI network were performed.Molecular docking and molecular dynamics techniques were applied for validation.Results A total of 8 prototype components absorbed into blood,synergistically acting on 101 targets,were identified by UPLC-MS/MS.They mediated 538 biological processes including immune response,positive regulation of gene expression,receptor binding,and cytokine activity.Meanuhile,116 signaling pathways,such as HIF-1,Toll-like receptor,JAK-STAT,T cell receptor,PI3K-Akt,and FoxO etc.were involved.The core targets were MAPK14,PTGS2,MMP9,PPARG,CCND1,etc..The results of molecular docking showed that formononetin and calycosin had strong docking binding activity with MAPK14.And molecular dynamics simulations further demonstrated that the binding between MAPK14 and formononetin or calycosin had good structural stability and binding affinity.Conclusion The results of serum pharmacochemistry,network pharmacology and molecular dynamics were verified to reveal the material basis and mechanism of Hedysari Radix in regulating immunity.The aim of this study is to provide scientific basis for its immunomodulatory mechanism.
10.Effect and mechanism of angiotensin(1-7)supplementation combined with exercise therapy on cardiac remodeling in rats with renal hypertension
Wenjie XU ; Xudong XIE ; Ruibo HE ; Gang MA ; Peng PENG
Chinese Journal of Tissue Engineering Research 2024;28(26):4137-4144
BACKGROUND:The renin-angiotensin system plays a key role in the occurrence and development of hypertension,in which angiotensin(1-7)has antihypertensive effect and reversely regulates the adverse effects of angiotensin Ⅱ.Exercise rehabilitation therapy is an important non-pharmaceutical means to prevent and treat hypertension;however,whether angiotensin(1-7)and exercise have a synergistic effect is not yet clear. OBJECTIVE:To explore the effect of angiotensin(1-7)supplementation combined with exercise therapy on cardiac remodeling in rats with renal hypertension and to investigate the possible mechanism of angiotensin(1-7)and its receptor signal axis. METHODS:Sixty male Sprague-Dawley rats were selected,of which 12 rats were randomly selected as normotensive group and the remaining 48 rats were used to make animal models of renal hypertension using two-kidney one-clip method and were then randomly divided into hypertension control group,hypertension exercise group,angiotensin(1-7)group and combined treatment group.One week after successful modeling,different interventions were given(for a period of 6 weeks)as follows:the hypertension exercise group was subjected to a running training on an electric treadmill,the angiotensin(1-7)group was perfused with angiotensin(1-7)by implanting Alzet microosmotic pump subcutaneously on the back of the rats,and the combined treatment group was perfused with angiotensin(1-7)after running training,while the normotensive group and hypertension control group were caged quietly.At 48 hours after the last training session,the tail artery blood pressure was measured with a non-invasive sphygmomanometer;the heart structure and function were detected by echocardiography;the left ventricular myocardium was taken for histopathological observation by hematoxylin-eosin and Masson staining,and the cardiomyocyte cross-sectional area and collagen volume fraction were obtained by image analysis software as markers of myocardial hypertrophy and fibrosis,respectively;the content of angiotensin(1-7)in the heart was detected by high performance liquid chromatography;the mRNA expression of cardiac embryonic genes,atrial natriuretic peptide and β-myosin heavy chain,was detected by real-time fluorescence quantitative PCR;and the protein expression of cardiac Mas receptor,angiotensin Ⅱ type 2 receptor and endothelial nitric oxide synthase was measured by western blot assay. RESULTS AND CONCLUSION:Compared with the normotensive group,blood pressure increased(P<0.05),cardiac function had no significant changes(P>0.05),cardiomyocyte cross-sectional area and collagen volume fraction increased(P<0.05),mRNA expression of atrial natriuretic peptide and β-myosin heavy chain was upregulated(P<0.05),angiotensin(1-7)content and protein expression of Mas receptor,angiotensin Ⅱ type 2 receptor and endothelial nitric oxide synthase was downregulated(P<0.05)in the hypertension control group.Compared with the hypertension control group,blood pressure decreased(P<0.05),cardiac function improved(P<0.05),collagen volume fraction decreased(P<0.05),cardiomyocyte cross-sectional area and angiotensin(1-7)content showed no significant changes(P>0.05),mRNA expression of atrial natriuretic peptide and β-myosin heavy chain was downregulated(P<0.05),and the protein expression of Mas receptor,angiotensin Ⅱ type 2 receptor and endothelial nitric oxide synthase was upregulated(P<0.05)in the hypertension exercise group;except for an increase in myocardial angiotensin(1-7)content(P<0.05),other parameters had no statistical significance(P>0.05)in the hypertension angiotensin(1-7)group.Compared with the hypertension exercise group,blood pressure decreased(P<0.05),cardiomyocyte cross-sectional area and cardiac function had no significant changes(P>0.05),collagen volume fraction decreased(P<0.05),angiotensin(1-7)content increased(P<0.05),mRNA expression of atrial natriuretic peptide and β-myosin heavy chain was downregulated(P<0.05),and the protein expression of Mas receptor,angiotensin Ⅱ type 2 receptor and endothelial nitric oxide synthase was upregulated(P<0.05)in the combined treatment group.To conclude,supplementation of angiotensin(1-7)alone cannot improve cardiac remodeling in rats with renal hypertension,but it can enhance the efficacy of exercise.The mechanism is related to the improvement of angiotensin(1-7)receptor deficiency and restoration of its signaling pathway function.

Result Analysis
Print
Save
E-mail