1.Effects of acid and alkali stress on ginsenoside content and histochemical localization of ginsenoside in adventitious root of Panax ginseng.
Tie-Jun LI ; Mei-Lan LIAN ; Chun-Hui SHAO ; Dan YU ; Xuan-Chun PIAO
China Journal of Chinese Materia Medica 2013;38(24):4277-4280
To investigate the effect of acid and alkali stress on ginsenoside content of Panax ginseng, adventitious roots culture in bioreactors were incubated for 30 d and pH value was adjusted. Ginsenoside content increased by reducing or raising the pH in culture medium, the muxium ginsenoside content was determined on the 5th days after acid treatment and on the 7th days after alkali treatment. The result of histochemical localization of ginsenoside revealed that the red color from light to dark were found in the adventitious root tissue, and ginsenoside mainly located in the pericycle cells where appeared the dark red color.
Ginsenosides
;
metabolism
;
Hydrogen-Ion Concentration
;
Panax
;
metabolism
;
physiology
;
Plant Roots
;
metabolism
;
Stress, Physiological
;
Time Factors
2.Effects of several factors on cell growth and ginsenoside accumulation of Panax ginseng suspension culture.
Tie-Jun LI ; Mei-Lan LIAN ; Dan YU ; Chun-Hui SHAO ; Xuan-Chun PIAO
China Journal of Chinese Materia Medica 2013;38(23):4047-4051
To improve cell suspension culture system of Panax ginseng, the dynamic of cell growth and medium consumption were studied, and the effects of filter on the culture vessel, revolution number, and inoculation density on cell growth and ginsenoside accumulation were also investigated. The maximum cell growth and ginsenoside accumulation was found on the 20th days of suspension culture, therefore, 20 days were confirmed as a suitable culture period for mass production of ginsenoside. Cell growth and ginsenoside content were promoted when the culture vessel had a ventilated filter. Revolution speed during suspension culture affected cell growth, but not ginsenoside content, a peak of ginsenoside productivity was found in the treatment of 120 r x min(-1). Inoculation density also influenced cell growth and ginsenoside accumulation, inoculation density of 6 g was better than other inoculation densities, the ginsenoside content and productivity were up to 12.8 mg x g(-1) DW and 146.6 mg x L(-1), respectively.
Cell Culture Techniques
;
methods
;
Cell Proliferation
;
Culture Media
;
chemistry
;
Ginsenosides
;
metabolism
;
Panax
;
cytology
;
growth & development
;
metabolism
;
Suspensions
3.Effect of methyl jasmonate on salidroside and polysaccharide accumulation in Rhodiola sachalinensis callus.
Yang LI ; Mei-Lan LIAN ; Chun-Hui SHAO ; Chan JIN ; Xuan-Chun PIAO
China Journal of Chinese Materia Medica 2014;39(21):4252-4257
OBJECTIVETo provide a new material for producing the Rhodiolasachalinensis products, the effect of methyl jasmonate (MeJA) on callus biomass and effective compound accumulation of Rhodiolasachalinensis was studied.
METHODThe calluses-cultured in 3 L-air lift balloon type bioreactor were treated with MeJA after 20 d of bioreactor culture and the effect of MeJA concentration and treatment days on callus biomass, salidroside or polysaccharide accumulation and superoxide dismutase (SOD) and peroxidase (POD) activities were investigated.
RESULTThe callus biomass was not significantly different after MeJA treatment (125) for 0-6 d but obviously decreased after 6 d treatment. The maximum salidroside or polysaccharide contents and SOD or POD activities were found after 4 d treatment of MeJA. MeJA concentration significantly affected callus biomass and effective compound accumulation, biomass decreased at MeJA concentrations higher than 125 μmol x L(-1). However, the effective compound contents were determined at higher MeJA concentration, and the highest salidroside and polysaccharide accumulation was found at 225 and 275 μmol x L(-1) MeJA, respectively and the maximum SOD and POD activities was found at 225 μmol x L(-1) MeJA. The effective compound contents in callus were compared with field-grown plants. Salidroside contents in calluses were 1.1-fold and 2. 4-fold more than in plant roots and stem or leave, respectively. Polysaccharide content in calluses were 3. 6-fold and 8.0-fold more than in plant roots and stem or leave, respectively.
CONCLUSIONSalidorside and polysaccharide in Rhodiolasachalinensiscalluses improved by MeJA treatment, 225 μmol x L(-1) MeJA and 4 d treatment were optimal. The effective compound contents in callus were obviously higher than in field-grown plants. Therefore, bioreactor culture is efficient for obtaining mass effective compounds of Rhodiolasachalinensis by culturing calluses. This method could provide an alternative material source for production of Rhodiolasachalinensis products.
Acetates ; pharmacology ; Biomass ; Bioreactors ; Cyclopentanes ; pharmacology ; Glucosides ; metabolism ; Oxylipins ; pharmacology ; Peroxidase ; metabolism ; Phenols ; metabolism ; Polysaccharides ; metabolism ; Rhodiola ; metabolism ; Superoxide Dismutase ; metabolism
4.Preliminary study on cultivation of adventitious roots of Hypericum perforatum in bioreactors.
Xiao-Kun YU ; Xuan-Chun PIAO ; Yue DAI ; Tie-Jun LI ; Mei-Lan LIAN
China Journal of Chinese Materia Medica 2012;37(24):3808-3811
OBJECTIVETo cultivate adventitious roots of Hypericum perforatum in bioreactors, in order to seek for suitable conditions for adventitious growth.
METHODThe effect of IBA concentration, sugar type and concentration, inoculum volume and air volume of adventitious roots on the cultivation of adventitious roots of H. perforatum was observed in a 5 L air-lift bioreactor.
RESULTAdventitious roots of H. perforatum were cultivated in a MS culture dish. With the increase of IBA concentration, the propagation coefficient of adventitious roots of H. perforatum was on the rise. The IBA concentration ranging between 1.25-1.75 mg x L(-1) was suitable for the growth of adventitious roots. Adventitious roots grew best with sucrose in MS medium, with the propagation coefficient up to 22.15. When sucrose concentration was 30 g x L(-1), fresh weight, dry weight and propagation coefficient reached the maximum value. An adventitious root reactor with an inoculum volume of 20 g was favorable for the growth of adventitious roots. The air volume of reactors of 0.075 vvm (air volume/culture volume per minute) was favorable for the growth of adventitious roots, with the significant increase in the propagation coefficient of adventitious roots. In the amplification experiment, we found that the cultivation conditions of adventitious roots in a 5 L bioreactor was completely applicable to that in 10 and 20 L bioreactors, and adventitious roots grew well in a large bioreactor.
CONCLUSIONIBA concentration, sugar type and concentration, inoculum volume and air volume had a significant effect on the growth of adventitious roots.
Air ; Biomass ; Bioreactors ; Carbohydrates ; pharmacology ; Dose-Response Relationship, Drug ; Hypericum ; drug effects ; growth & development ; Indoles ; pharmacology ; Plant Roots ; drug effects ; growth & development ; Sucrose ; pharmacology ; Tissue Culture Techniques ; instrumentation ; methods
5.Cultivation of protocorms of Dendrobium candidum in air-lift bioreactors.
Rui YAO ; Xuan-Chun PIAO ; Tie-Jun LI ; Chun-Hui SHAO ; Mei-Lan LIAN
China Journal of Chinese Materia Medica 2012;37(24):3763-3767
OBJECTIVETo explore the factors affecting the growth of protocorms of Dendrobium candidum and substance synthesis in a reactor, in order to provide a new method for mass production of raw materials of D. candidum.
METHODProtocorms in vitro were used as experimental materials to study the effect of inoculum volume, light intensity and air volume on the growth of protocorms of D. candidum and the accumulation of polysaccharide and dendrobine in a 3 L-air lift balloon type bioreactor.
RESULTAfter 30 days of cultivation in a bioreactor, protocorms became dark green and grew well at the inoculum volume of 10 g x L(-1). The polysaccharide content in protocorms showed no difference at various inoculum volumes; whereas the dendrobine content showed differences (with the highest treatment at the inoculum volume of 10 g x L(-1)), particularly the productions of polysaccharide and alkaloid reached the maximum at the inoculum volume of 10 g x L(-1). The condition of 1 600 lx of light intensity was the most favorable for the growth of protocorms. Though light played a role of improving the accumulation of polysaccharide in protocorms of D. candidum, it could inhibit the accumulation of dendrobine. Polysaccharide content and production were better under light conditions of 1 600 and 2 400 lx than dark conditions. Despite the maximum dendrobine content in dark conditions, the dendrobine production showed the maximum in the light condition of 1 600 lx due to poor growth of protocorms. Protocorms grew well and became dark green at the air volume of 0.2 vvm (air volume culture volume per minute) , which was better than at 0.1 and 0.3, with maximum polysaccharide and dendrobine contents and productions.
CONCLUSIONIn a 3 L-air lift balloon type bioreactor with a working volume of 2 L, the conditions of 10 inoculum volume, 1 600 lx light intensity and 0.2 air volume were favorable for the growth of protocorms and the production of dendrobine. This demonstrates that the cultivation of D. candidum and substance synthesis in a reactor is an effectie approach for mass production of polysaccharide and dendrobine.
Air ; Alkaloids ; metabolism ; Bioreactors ; Dendrobium ; growth & development ; metabolism ; radiation effects ; Dose-Response Relationship, Radiation ; Light ; Plants, Medicinal ; growth & development ; metabolism ; radiation effects ; Polysaccharides ; metabolism ; Tissue Culture Techniques ; methods
6.Shikonin Exerts Cytotoxic Effects in Human Colon Cancers by Inducing Apoptotic Cell Death via the Endoplasmic Reticulum and Mitochondria-Mediated Pathways.
Xia HAN ; Kyoung Ah KANG ; Mei Jing PIAO ; Ao Xuan ZHEN ; Yu Jae HYUN ; Hyun Min KIM ; Yea Seong RYU ; Jin Won HYUN
Biomolecules & Therapeutics 2019;27(1):41-47
The apoptotic effects of shikonin (5,8-dihydroxy-2-[(1R)-1-hydroxy-4-methylpent-3-enyl]naphthalene-1,4-dione) on the human colon cancer cell line SNU-407 were investigated in this study. Shikonin showed dose-dependent cytotoxic activity against SNU-407 cells, with an estimated IC50 value of 3 µM after 48 h of treatment. Shikonin induced apoptosis, as evidenced by apoptotic body formation, sub-G1 phase cells, and DNA fragmentation. Shikonin induced apoptotic cell death by activating mitogen-activated protein kinase family members, and the apoptotic process was mediated by the activation of endoplasmic reticulum (ER) stress, leading to activation of the PERK/elF2α/CHOP apoptotic pathway, and mitochondrial Ca2+ accumulation. Shikonin increased mitochondrial membrane depolarization and altered the levels of apoptosis-related proteins, with a decrease in B cell lymphoma (Bcl)-2 and an increase in Bcl-2-associated X protein, and subsequently, increased expression of cleaved forms of caspase-9 and -3. Taken together, we suggest that these mechanisms, including MAPK signaling and the ER-and mitochondria-mediated pathways, may underlie shikonin-induced apoptosis related to its anticancer effect.
Apoptosis
;
bcl-2-Associated X Protein
;
Caspase 9
;
Cell Death*
;
Cell Line
;
Colon*
;
Colonic Neoplasms*
;
DNA Fragmentation
;
Endoplasmic Reticulum*
;
Extracellular Vesicles
;
Humans*
;
Inhibitory Concentration 50
;
Lymphoma, B-Cell
;
Mitochondria
;
Mitochondrial Membranes
;
Protein Kinases
7.Esculetin Prevents the Induction of Matrix Metalloproteinase-1 by Hydrogen Peroxide in Skin Keratinocytes
Ao Xuan ZHEN ; Mei Jing PIAO ; Kyoung Ah KANG ; Pincha Devage Sameera Madushan FERNANDO ; Hee Kyoung KANG ; Young Sang KOH ; Jin Won HYUN
Journal of Cancer Prevention 2019;24(2):123-128
BACKGROUND: Reactive oxygen species (ROS) are involved in various cellular diseases. Excessive ROS can cause intracellular oxidative stress, resulting in a calcium imbalance and even aging. In this study, we evaluated the protective effect of esculetin on oxidative stress-induced aging in human HaCaT keratinocytes. METHODS: Human keratinocytes were pretreated with esculetin for 30 minutes and treated with H₂O₂. Then, the protective effects on oxidative stress-induced matrix metalloproteinase (MMP)-1 were detected by Flou-4-AM staining, reverse transcription-PCR, Western blotting, and quantitative fluorescence assay. RESULTS: Esculetin prevented H₂O₂-induced aging by inhibiting MMP-1 mRNA, protein, and activity levels. In addition, esculetin decreased abnormal levels of phospho-MEK1, phospho-ERK1/2, phospho-SEK1, phospho-JNK1/2, c-Fos, and phospho-c-Jun and inhibited activator protein 1 binding activity. CONCLUSIONS: Esculetin prevented excessive levels of intracellular calcium and reduced the expression levels of aging-related proteins.
Aging
;
Blotting, Western
;
Calcium
;
Fluorescence
;
Humans
;
Hydrogen Peroxide
;
Hydrogen
;
Keratinocytes
;
Matrix Metalloproteinase 1
;
Oxidative Stress
;
Reactive Oxygen Species
;
RNA, Messenger
;
Skin
;
Transcription Factor AP-1
8.Optimizing extraction of microbial DNA from urine: Advancing urinary microbiome research in bladder cancer
Chuang-Ming ZHENG ; Ho Won KANG ; Seongmin MOON ; Young Joon BYUN ; Won Tae KIM ; Yung Hyun CHOI ; Sung-Kwon MOON ; Xuan-Mei PIAO ; Seok Joong YUN
Investigative and Clinical Urology 2025;66(3):272-280
Purpose:
This study aimed to evaluate and optimize microbial DNA extraction methods from urine, a non-invasive sample source, to enhance DNA quality, purity, and reliability for urinary microbiome research and biomarker discovery in bladder cancer.
Materials and Methods:
A total of 302 individuals (258 with genitourinary cancers and 44 with benign urologic diseases) participated in this study. Urine samples were collected via sterile catheterization, resulting in 445 vials for microbial analysis. DNA extraction was performed using three protocols: the standard protocol (SP), water dilution protocol (WDP), and chelation-assisted protocol (CAP). DNA quality (concentration, purity, and contamination levels) was assessed using NanoDrop spectrophotometry.Microbial analysis was conducted on 138 samples (108 cancerous and 30 benign) using 16S rRNA sequencing. Prior to sequencing on the Illumina MiSeq platform, Victor 3 fluorometry was used for validation.
Results:
WDP outperformed other methods, achieving significantly higher 260/280 and 260/230 ratios, indicating superior DNA purity and reduced contamination, while maintaining reliable DNA yields. CAP was excluded due to poor performance across all metrics. Microbial abundance was significantly higher in WDP-extracted samples (p<0.0001), whereas SP demonstrated higher alpha diversity indices (p<0.01), likely due to improved detection of low-abundance taxa. Beta diversity analysis showed no significant compositional differences between SP and WDP (p=1.0), supporting the reliability of WDP for microbiome research.
Conclusions
WDP is a highly effective and reliable method for microbial DNA extraction from urine, ensuring high-quality and reproducible results. Future research should address sample variability and crystal precipitation to further refine microbiome-based diagnostics and therapeutics.
9.L-carnitine treatment attenuates renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction
Hai Yan ZHAO ; Hui Ying LI ; Jian JIN ; Ji Zhe JIN ; Long Ye ZHANG ; Mei Ying XUAN ; Xue Mei JIN ; Yu Ji JIANG ; Hai Lan ZHENG ; Ying Shun JIN ; Yong Jie JIN ; Bum Soon CHOI ; Chul Woo YANG ; Shang Guo PIAO ; Can LI
The Korean Journal of Internal Medicine 2021;36(Suppl 1):S180-S195
Background/Aims:
Accumulating evidence indicates that L-carnitine (LC) protects against multiorgan damage through its antioxidant properties and preservation of the mitochondria. Little information is available about the effects of LC on renal fibrosis. This study examined whether LC treatment would provide renoprotection in a rat model of unilateral ureteral obstruction (UUO) and in vitro.
Methods:
Sprague-Dawley rats that underwent UUO were treated daily with LC for 7 or 14 days. The influence of LC on renal injury caused by UUO was evaluated by histopathology, and analysis of gene expression, oxidative stress, mitochondrial function, programmed cell death, and phosphatidylinositol 3-kinase (PI3K)/ AKT/forkhead box protein O 1a (FoxO1a) signaling. In addition, H2O2-exposed human kidney cells (HK-2) were treated with LC.
Results:
LC treatment inhibited expression of proinflammatory and profibrotic cytokines, and was followed by a significant attenuation of tubulointerstitial inflammation and fibrosis. The increased oxidative stress caused by UUO was associated with mitochondrial dysfunction and excessive apoptosis and autophagy via PI3K/AKT/FoxO1a-dependent signaling, and this was abrogated by administration of LC. In H2O2-exposed HK-2 cells, LC decreased intracellular production of reactive oxygen species, and suppressed expression of profibrotic cytokines and reduced the number of apoptotic cells.
Conclusions
LC protects against the progression of tubulointerstitial fibrosis in an obstructed kidney.
10.7,8-Dihydroxyflavone Protects High Glucose-Damaged Neuronal Cells against Oxidative Stress.
Suk Ju CHO ; Kyoung Ah KANG ; Mei Jing PIAO ; Yea Seong RYU ; Pincha Devage Sameera Madushan FERNANDO ; Ao Xuan ZHEN ; Yu Jae HYUN ; Mee Jung AHN ; Hee Kyoung KANG ; Jin Won HYUN
Biomolecules & Therapeutics 2019;27(1):85-91
Oxidative stress is considered a major contributor in the pathogenesis of diabetic neuropathy and in diabetes complications, such as nephropathy and cardiovascular diseases. Diabetic neuropathy, which is the most frequent complications of diabetes, affect sensory, motor, and autonomic nerves. This study aimed to investigate whether 7,8-dihydroxyflavone (7,8-DHF) protects SH-SY5Y neuronal cells against high glucose-induced toxicity. In the current study, we found that diabetic patients exhibited higher lipid peroxidation caused by oxidative stress than healthy subjects. 7,8-DHF exhibits superoxide anion and hydroxyl radical scavenging activities. High glucose-induced toxicity severely damaged SH-SY5Y neuronal cells, causing mitochondrial depolarization; however, 7,8-DHF recovered mitochondrial polarization. Furthermore, 7,8-DHF effectively modulated the expression of pro-apoptotic protein (Bax) and anti-apoptotic protein (Bcl-2) under high glucose, thus inhibiting the activation of caspase signaling pathways. These results indicate that 7,8-DHF has antioxidant effects and protects cells from apoptotic cell death induced by high glucose. Thus, 7,8-DHF may be developed into a promising candidate for the treatment of diabetic neuropathy.
Antioxidants
;
Autonomic Pathways
;
Cardiovascular Diseases
;
Cell Death
;
Diabetes Complications
;
Diabetic Neuropathies
;
Glucose
;
Healthy Volunteers
;
Humans
;
Hydroxyl Radical
;
Lipid Peroxidation
;
Neurons*
;
Oxidative Stress*
;
Superoxides