1.Multicenter machine learning-based construction of a model for predicting potential organ donors and validation with decision curve analysis
Xu WANG ; Wenxiu LI ; Fenghua WANG ; Shuli WU ; Dong JIA ; Xin GE ; Zhihua SHAN ; Tongzuo LI
Organ Transplantation 2026;17(1):106-115
Objective To evaluate the predictive value of different machine learning models constructed in a multicenter environment for potential organ donors and verify their clinical application feasibility. Methods The study included 2 000 inpatients admitted to five domestic tertiary hospitals from January 2020 to December 2023, who met the criteria for potential organ donation assessment. They were randomly divided into a training set and an internal validation set (7∶3). Another 300 similar patients admitted to the First Affiliated Hospital of Harbin Medical University from January 2024 to April 2025 were included as an external validation set. The area under the curve (AUC), sensitivity, specificity, accuracy and F1-score of three models were compared, and the consistency of the potential organ donor determination process was tested. Multivariate logistic regression analysis was used to identify predictive factors of potential organ donors. Decision curve analysis (DCA) was employed to verify the resource efficiency of each model, and the threshold interval and intervention balance point were assessed. Results Apart from age, there were no significant differences in other basic characteristics among the centers (all P>0.05). The consistency of the potential organ donor determination process among researchers in each center was good [all 95% confidence interval (CI) lower limits >0]. In the internal validation set, the XGBoost model had the best predictive performance (AUC=0.92, 95% CI 0.89-0.94) and the best calibration (P=0.441, Brier score 0.099). In the external validation set, the XGBoost model also had the best predictive performance (AUC=0.91, 95% CI 0.88-0.94), outperforming logistic regression and random forest models. Multivariate logistic regression showed that mechanical ventilation had the greatest impact (odds ratio=2.06, 95% CI 1.54-2.76, P<0.001). DCA indicated that the XGBoost model had the highest net benefit in the threshold interval of 0.2-0.6. The “treat all” strategy only had a slight advantage at extremely low thresholds. The recommended threshold interval, which balances intervention costs and clinical benefits, considers ≥50% positive predictive value (PPV) and ≤50 referrals per 100 high-risk patients. Conclusions The XGBoost model established in a multicenter environment is accurate and well-calibrated in predicting potential organ donors. Combined with DCA, it may effectively guide the timing of clinical interventions and resource allocation, providing new ideas for the assessment and management of organ donation after brain death.
2.Structure, content and data standardization of rehabilitation medical records
Yaru YANG ; Zhuoying QIU ; Di CHEN ; Zhongyan WANG ; Meng ZHANG ; Shiyong WU ; Yaoguang ZHANG ; Xiaoxie LIU ; Yanyan YANG ; Bin ZENG ; Mouwang ZHOU ; Yuxiao XIE ; Guangxu XU ; Jiejiao ZHENG ; Mingsheng ZHANG ; Xiangming YE ; Jian YANG ; Na AN ; Yuanjun DONG ; Xiaojia XIN ; Xiangxia REN ; Ye LIU ; Yifan TIAN
Chinese Journal of Rehabilitation Theory and Practice 2025;31(1):21-32
ObjectiveTo elucidate the critical role of rehabilitation medical records (including electronic records) in rehabilitation medicine's clinical practice and management, comprehensively analyzed the structure, core content and data standards of rehabilitation medical records, to develop a standardized medical record data architecture and core dataset suitable for rehabilitation medicine and to explore the application of rehabilitation data in performance evaluation and payment. MethodsBased on the regulatory documents Basic Specifications for Medical Record Writing and Basic Specifications for Electronic Medical Records (Trial) issued by National Health Commission of China, and referencing the World Health Organization (WHO) Family of International Classifications (WHO-FICs) classifications, International Classification of Diseases (ICD-10/ICD-11), International Classification of Functioning, Disability and Health (ICF), and International Classification of Health Interventions (ICHI Beta-3), this study constructed the data architecture, core content and data standards for rehabilitation medical records. Furthermore, it explored the application of rehabilitation record summary sheets (home page) data in rehabilitation medical statistics and payment methods, including Diagnosis-related Groups (DRG), Diagnosis-Intervention Packet (DIP) and Case Mix Index. ResultsThis study proposed a systematic standard framework for rehabilitation medical records, covering key components such as patient demographics, rehabilitation diagnosis, functional assessment, rehabilitation treatment prescriptions, progress evaluations and discharge summaries. The research analyzed the systematic application methods and data standards of ICD-10/ICD-11, ICF and ICHI Beta-3 in the fields of medical record terminology, coding and assessment. Constructing a standardized data structure and data standards for rehabilitation medical records can significantly improve the quality of data reporting based on the medical record summary sheet, thereby enhancing the quality control of rehabilitation services, effectively supporting the optimization of rehabilitation medical insurance payment mechanisms, and contributing to the establishment of rehabilitation medical performance evaluation and payment based on DRG and DIP. ConclusionStructured rehabilitation records and data standardization are crucial tools for quality control in rehabilitation. Systematically applying the three reference classifications of the WHO-FICs, and aligning with national medical record and electronic health record specifications, facilitate the development of a standardized rehabilitation record architecture and core dataset. Standardizing rehabilitation care pathways based on the ICF methodology, and developing ICF- and ICD-11-based rehabilitation assessment tools, auxiliary diagnostic and therapeutic systems, and supporting terminology and coding systems, can effectively enhance the quality of rehabilitation records and enable interoperability and sharing of rehabilitation data with other medical data, ultimately improving the quality and safety of rehabilitation services.
3.Skin pharmacokinetics of inositol nicotinate in heparin sodium inositol nicotinate cream
Yaling CUI ; Qiong WU ; Liangyu MA ; Bei HU ; Dong YAO ; Zihua XU
Journal of Pharmaceutical Practice and Service 2025;43(1):6-9
Objective To establish an HPLC method to determine the concentration of inositol nicotinate(IN) in rat skin, and study the pharmacokinetic characteristics of IN after transdermal administration of heparin sodium inositol nicotinate cream in rats. Methods HPLC method was used to establish a simple and rapid analytical method for the determination of IN concentration in the skin of rats at different time points after administration. The established method was used to study the pharmacokinetics of IN after transdermal administration of heparin sodium inositol nicotinate cream in rats, and the pharmacokinetic parameters were fitted with DAS software. Results The linearity of the analytical method was good in the concentration range of 0.25-20 μg/ml, the quantitative limit was 0.25 μg/ml, and the average recovery rate was 96.18%. The pharmacokinetic parameters of IN after transdermal administration of heparin sodium inositol nicotinate cream in rats were as follows: t1/2 was (4.555±2.054) h, Tmax was (6±0)h, Cmax was (16.929±2.153)mg/L, AUC0−t was (150.665±16.568) mg·h /L ,AUC0−∞ was (161.074±23.917) mg·h /L, MRT(0−t) was (9.044±0.618)h, MRT(0−∞) was (10.444±1.91) h, CLz/F was (0.19±0.03) L/(h·kg), and Vz/F was (1.19±0.437) L/(h·kg). Conclusion IN could quickly penetrate the skin and accumulate in the skin for a long time, which was beneficial to the pharmacological action of drugs on the lesion site for a long time. The method is simple, rapid, specific and reproducible, which could be successfully applied to the pharmacokinetic study of IN after transdermal administration in rats.
4.Analysis on Quality Standard of Hedyotis Herba Dispensing Granules Based on Standard Decoction
Jinghua ZHANG ; Nana WU ; Yanan LYU ; Guiyun CAO ; Jiacheng XU ; Yongqiang LIN ; Xiaodi DONG ; Jinxin LI ; Zhaoqing MENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):210-217
ObjectiveTo establish the specific chromatogram and quantitative analysis of multi-components by single-marker(QAMS) based on linear calibration using two reference substances(LCTRS), explore the consistency between Hedyotis Herba dispensing granules and standard decoction, and evaluate the quality of the dispensing granules. MethodsHigh performance liquid chromatography(HPLC) specific chromatogram was established based on 15 batches of Hedyotis Herba standard decoction and 10 batches of the dispensing granules, and LCTRS was used to locate chromatographic peaks. The actual retention times of 7 characteristic peaks in the specific chromatogram was measured on 24 different types of C18 columns, taking deacetyl asperulosidic acid and asperulosidic acid as the dual standard compounds, the retention times of the other 5 characteristic peaks were predicted and validated. Based on this, QAMS was developed to determine the contents of four components(deacetyl asperulosidic acid, deacetyl asperulosidic acid methyl ester, asperulosidic acid, and p-coumaric acid). Then, the relative correction factors of deacetyl asperulosidic acid, deacetyl asperulosidic acid methyl ester and p-coumaric acid were calculated using the reference peak of asperulosidic acid in the dual standard compounds, and each component was quantified accordingly. Finally, the consistency between the dispensing granules and standard decoction was assessed by taking extract rate of the standard decoction, consistency of the specific chromatograms, contents and transfer rates of the indicator components as indexes, and the quality of the dispensing granules was evaluated. ResultsThere were 7 common peaks in the characteristic chromatogram of samples of Hedyotis Herba standard decoction and the dispensing granules, and four of them were identified by reference standards, namely deacetyl asperulosidic acid(peak 1), deacetyl asperulosidic acid methyl ester(peak 3), asperulosidic acid(peak 6) and p-coumaric acid(peak 7). The similarity between the dispensing granules and the standard decoction was >0.9. The absolute deviation in the predicted retention time for each component by LCTRS was lower than that of the relative retention time method. The extract rate of the 15 batches of Hedyotis Herba standard decoction ranged from 7.89% to 14.60%, the contents of deacetyl asperulosidic acid, deacetyl asperulosidic acid methyl ester, asperulosidic acid and p-coumaric acid were 6.62-19.70, 3.83-17.99, 1.57-6.69, 1.62-4.52 mg·g-1, and the transfer rates of these components from decoction pieces to the standard decoction were 22.89%-39.60%, 34.03%-62.24%, 24.25%-43.70%, and 40.58%-73.71%, respectively. The extract rate, index component contents and transfer rates from decoction pieces to the three batches of Hedyotis Herba dispensing granules(P1-P3), produced by manufacturer A, were similar to those of the standard decoction prepared from the same batch of decoction pieces, and all fell within the specified range. The contents of the 4 indicator components in 7 batches of the dispensing granules(P4-P10) from manufacturers B-E were all within the range of the content converted from the standard decoction based on the quantity of the dispensing granules. ConclusionThe established specific chromatogram and QAMS based on LCTRS are reasonable and reliable. Based on the evaluation indicators of standard decoction yield, consistency of specific chromatograms, contents and transfer rates of the four index components, the 10 batches of Hedyotis Herba dispensing granules from various manufacturers have exhibited good consistency with the standard decoction, indicating that the current production process is relatively reasonable.
5.Screening of initial processing methods for Ligusticum sinense slice based on differential metabolites
Yu HE ; Yanjing DONG ; Qian QIN ; Danyang WU ; Conglong XU ; Shouwen ZHANG
China Pharmacy 2025;36(11):1317-1322
OBJECTIVE To screen the primary processing methods of Ligusticum sinense slice based on differential metabolites, and provide theoretical basis for the scientific processing of L. sinense. METHODS Using 13 groups of L. sinense slice processed by fresh-cutting or traditional methods as samples, UHPLC-QE-MS was employed for metabolite identification. Multivariate statistical analysis was applied to screen differential metabolites among the 13 sample groups, analyzing the effects of washing, soaking, drying methods, and drying cycles on both the relative expressions of differential metabolites and the contents of carboxylic acids and their derivatives in the samples (to reflect the total amino acid content). RESULTS Principal component analysis and partial least squares-discriminant analysis both showed significant intergroup differences among the 13 sample groups. A total of 688 differential metabolites were screened from the 13 sample groups, with carboxylic acids and their derivatives showing the highest proportion. The relative expression levels of phosphatidylcholine significantly increased after washing treatment, while tryptophan expression significantly decreased after soaking treatment. Samples dried at 50-60 ℃ showed significantly increased expression of psoralen, whereas those dried at 40 ℃ showed significantly decreased expression of methyl -p- methoxycinnamate. Both washing and soaking treatments significantly reduced the total amino acid content in samples, while secondary drying significantly increased it. The three controlled-temperature drying methods maintained relatively stable total content of amino acids in samples. CONCLUSIONS The optimal processing protocol for L. sinense slice is as follows: fresh L. sinense slice should be freshly cut at the production site, undergo quick washing after soil removal, and be dried twice at 40 ℃ (before and after slicing).
6.Clinical Efficacy of Xiaoji Hufei Formula in Protecting Children with Close Contact Exposure to Influenza: A Multicenter,Prospective, Non-randomized, Parallel, Controlled Trial
Jing WANG ; Jianping LIU ; Tiegang LIU ; Hong WANG ; Yingxin FU ; Jing LI ; Huaqing TAN ; Yingqi XU ; Yanan MA ; Wei WANG ; Jia WANG ; Haipeng CHEN ; Yuanshuo TIAN ; Yang WANG ; Chen BAI ; Zhendong WANG ; Qianqian LI ; He YU ; Xueyan MA ; Fei DONG ; Liqun WU ; Xiaohong GU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):223-230
ObjectiveTo evaluate the efficacy and safety of Xiaoji Hufei Formula in protecting children with close contact exposure to influenza, and to provide reference and evidence-based support for better clinical prevention and treatment of influenza in children. MethodsA multicenter, prospective, non-randomized, parallel, controlled trial was conducted from October 2021 to May 2022 in five hospitals, including Dongfang Hospital of Beijing University of Chinese Medicine. Confirmed influenza cases and influenza-like illness (ILI) cases were collected, and eligible children with close contact exposure to these cases were recruited in the outpatient clinics. According to whether the enrolled close contacts were willing to take Xiaoji Hufei formula for influenza prevention, they were assigned to the observation group (108 cases) or the control group (108 cases). Follow-up visits were conducted on days 7 and 14 after enrollment. The primary outcomes were the incidence of ILI and the rate of laboratory-confirmed influenza. Secondary outcomes included traditional Chinese medicine (TCM) symptom score scale for influenza, influenza-related emergency (outpatient) visit rate, influenza hospitalization rate, and time to onset after exposure to influenza cases. ResultsA total of 216 participants were enrolled, with 108 in the observation group and 108 in the control group. Primary outcomes: (1) Incidence of ILI: The incidence was 12.0% (13/108) in the observation group and 23.1% (25/108) in the control group, with the observation group showing a significantly lower incidence (χ2=4.6, P<0.05). (2) Influenza confirmation rate: 3.7% (4/108) in the observation group and 4.6% (5/108) in the control group, with no statistically significant difference. Secondary outcomes: (1) TCM symptom score scale: after onset, nasal congestion and runny nose scores differed significantly between the two groups (P<0.05), while other symptoms such as fever, sore throat, and cough showed no significant differences. (2) Influenza-related emergency (outpatient) visit rate: 84.6% (11 cases) in the observation group and 96.0% (24 cases) in the control group, with no significant difference. (3) Time to onset after exposure: The median onset time after exposure to index patients was 7 days in the observation group and 4 days in the control group, with a statistically significant difference (P<0.05). ConclusionIn previously healthy children exposed to infectious influenza cases under unprotected conditions, Xiaoji Hufei formula prophylaxis significantly reduced the incidence of ILI. Xiaoji Hufei Formula can be recommended as a specific preventive prescription for influenza in children.
7.Clinical Efficacy of Xiaoji Hufei Formula in Protecting Children with Close Contact Exposure to Influenza: A Multicenter,Prospective, Non-randomized, Parallel, Controlled Trial
Jing WANG ; Jianping LIU ; Tiegang LIU ; Hong WANG ; Yingxin FU ; Jing LI ; Huaqing TAN ; Yingqi XU ; Yanan MA ; Wei WANG ; Jia WANG ; Haipeng CHEN ; Yuanshuo TIAN ; Yang WANG ; Chen BAI ; Zhendong WANG ; Qianqian LI ; He YU ; Xueyan MA ; Fei DONG ; Liqun WU ; Xiaohong GU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(21):223-230
ObjectiveTo evaluate the efficacy and safety of Xiaoji Hufei Formula in protecting children with close contact exposure to influenza, and to provide reference and evidence-based support for better clinical prevention and treatment of influenza in children. MethodsA multicenter, prospective, non-randomized, parallel, controlled trial was conducted from October 2021 to May 2022 in five hospitals, including Dongfang Hospital of Beijing University of Chinese Medicine. Confirmed influenza cases and influenza-like illness (ILI) cases were collected, and eligible children with close contact exposure to these cases were recruited in the outpatient clinics. According to whether the enrolled close contacts were willing to take Xiaoji Hufei formula for influenza prevention, they were assigned to the observation group (108 cases) or the control group (108 cases). Follow-up visits were conducted on days 7 and 14 after enrollment. The primary outcomes were the incidence of ILI and the rate of laboratory-confirmed influenza. Secondary outcomes included traditional Chinese medicine (TCM) symptom score scale for influenza, influenza-related emergency (outpatient) visit rate, influenza hospitalization rate, and time to onset after exposure to influenza cases. ResultsA total of 216 participants were enrolled, with 108 in the observation group and 108 in the control group. Primary outcomes: (1) Incidence of ILI: The incidence was 12.0% (13/108) in the observation group and 23.1% (25/108) in the control group, with the observation group showing a significantly lower incidence (χ2=4.6, P<0.05). (2) Influenza confirmation rate: 3.7% (4/108) in the observation group and 4.6% (5/108) in the control group, with no statistically significant difference. Secondary outcomes: (1) TCM symptom score scale: after onset, nasal congestion and runny nose scores differed significantly between the two groups (P<0.05), while other symptoms such as fever, sore throat, and cough showed no significant differences. (2) Influenza-related emergency (outpatient) visit rate: 84.6% (11 cases) in the observation group and 96.0% (24 cases) in the control group, with no significant difference. (3) Time to onset after exposure: The median onset time after exposure to index patients was 7 days in the observation group and 4 days in the control group, with a statistically significant difference (P<0.05). ConclusionIn previously healthy children exposed to infectious influenza cases under unprotected conditions, Xiaoji Hufei formula prophylaxis significantly reduced the incidence of ILI. Xiaoji Hufei Formula can be recommended as a specific preventive prescription for influenza in children.
8.Introduction to Implementation Science Theories, Models, and Frameworks
Lixin SUN ; Enying GONG ; Yishu LIU ; Dan WU ; Chunyuan LI ; Shiyu LU ; Maoyi TIAN ; Qian LONG ; Dong XU ; Lijing YAN
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1332-1343
Implementation Science is an interdisciplinary field dedicated to systematically studying how to effectively translate evidence-based research findings into practical application and implementation. In the health-related context, it focuses on enhancing the efficiency and quality of healthcare services, thereby facilitating the transition from scientific evidence to real-world practice. This article elaborates on Theories, Models, and Frameworks (TMF) within health-related Implementation Science, clarifying their basic concepts and classifications, and discussing their roles in guiding implementation processes. Furthermore, it reviews and prospects current research from three aspects: the constituent elements of TMF, their practical applications, and future directions. Five representative frameworks are emphasized, including the Consolidated Framework for Implementation Research (CFIR), the Practical Robust Implementation and Sustainability Model (PRISM), the Exploration, Preparation, Implementation, Sustainment (EPIS)framework, the Behavior Change Wheel (BCW), and the Normalization Process Theory (NPT). Additionally, resources such as the Dissemination & Implementation Models Webtool and the T-CaST tool are introduced to assist researchers in selecting appropriate TMFs based on project-specific needs.
9.Role of radiotherapy in extensive-stage small cell lung cancer after durvalumab-based immunochemotherapy: A retrospective study.
Lingjuan CHEN ; Yi KONG ; Fan TONG ; Ruiguang ZHANG ; Peng DING ; Sheng ZHANG ; Ye WANG ; Rui ZHOU ; Xingxiang PU ; Bolin CHEN ; Fei LIANG ; Qiaoyun TAN ; Yu XU ; Lin WU ; Xiaorong DONG
Chinese Medical Journal 2025;138(17):2130-2138
BACKGROUND:
The purpose of this study was to evaluate the safety and efficacy of subsequent radiotherapy (RT) following first-line treatment with durvalumab plus chemotherapy in patients with extensive-stage small cell lung cancer (ES-SCLC).
METHODS:
A total of 122 patients with ES-SCLC from three hospitals during July 2019 to December 2021 were retrospectively analyzed. Inverse probability of treatment weighting (IPTW) analysis was performed to address potential confounding factors. The primary focus of our evaluation was to assess the impact of RT on progression-free survival (PFS) and overall survival (OS).
RESULTS:
After IPTW analysis, 49 patients received durvalumab plus platinum-etoposide (EP) chemotherapy followed by RT (Durva + EP + RT) and 72 patients received immunochemotherapy (Durva + EP). The median OS was 17.2 months vs . 12.3 months (hazard ratio [HR]: 0.38, 95% confidence interval [CI]: 0.17-0.85, P = 0.020), and the median PFS was 8.9 months vs . 5.9 months (HR: 0.56, 95% CI: 0.32-0.97, P = 0.030) in Durva + EP + RT and Durva + EP groups, respectively. Thoracic radiation therapy (TRT) resulted in longer OS (17.2 months vs . 14.7 months) and PFS (9.1 months vs . 7.2 months) compared to RT directed to other metastatic sites. Among patients with oligo-metastasis, RT also showed significant benefits, with a median OS of 17.4 months vs . 13.7 months and median PFS of 9.8 months vs . 5.9 months compared to no RT. Continuous durvalumab treatment beyond progression (TBP) prolonged OS compared to patients without TBP, in both the Durva + EP + RT (NA vs . 15.8 months, HR: 0.48, 95% CI: 0.14-1.63, P = 0.238) and Durva + EP groups (12.3 months vs . 4.3 months, HR: 0.29, 95% CI: 0.10-0.81, P = 0.018). Grade 3 or 4 adverse events occurred in 13 (26.5%) and 13 (18.1%) patients, respectively, in the two groups; pneumonitis was mostly low-grade.
CONCLUSION
Addition of RT after first-line immunochemotherapy significantly improved survival outcomes with manageable toxicity in ES-SCLC.
Humans
;
Small Cell Lung Carcinoma/therapy*
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
Lung Neoplasms/therapy*
;
Aged
;
Antibodies, Monoclonal/therapeutic use*
;
Adult
;
Immunotherapy/methods*
;
Aged, 80 and over
10.Large models in medical imaging: Advances and prospects.
Mengjie FANG ; Zipei WANG ; Sitian PAN ; Xin FENG ; Yunpeng ZHAO ; Dongzhi HOU ; Ling WU ; Xuebin XIE ; Xu-Yao ZHANG ; Jie TIAN ; Di DONG
Chinese Medical Journal 2025;138(14):1647-1664
Recent advances in large models demonstrate significant prospects for transforming the field of medical imaging. These models, including large language models, large visual models, and multimodal large models, offer unprecedented capabilities in processing and interpreting complex medical data across various imaging modalities. By leveraging self-supervised pretraining on vast unlabeled datasets, cross-modal representation learning, and domain-specific medical knowledge adaptation through fine-tuning, large models can achieve higher diagnostic accuracy and more efficient workflows for key clinical tasks. This review summarizes the concepts, methods, and progress of large models in medical imaging, highlighting their potential in precision medicine. The article first outlines the integration of multimodal data under large model technologies, approaches for training large models with medical datasets, and the need for robust evaluation metrics. It then explores how large models can revolutionize applications in critical tasks such as image segmentation, disease diagnosis, personalized treatment strategies, and real-time interactive systems, thus pushing the boundaries of traditional imaging analysis. Despite their potential, the practical implementation of large models in medical imaging faces notable challenges, including the scarcity of high-quality medical data, the need for optimized perception of imaging phenotypes, safety considerations, and seamless integration with existing clinical workflows and equipment. As research progresses, the development of more efficient, interpretable, and generalizable models will be critical to ensuring their reliable deployment across diverse clinical environments. This review aims to provide insights into the current state of the field and provide directions for future research to facilitate the broader adoption of large models in clinical practice.
Humans
;
Diagnostic Imaging/methods*
;
Precision Medicine/methods*
;
Image Processing, Computer-Assisted/methods*

Result Analysis
Print
Save
E-mail