1.Multicenter machine learning-based construction of a model for predicting potential organ donors and validation with decision curve analysis
Xu WANG ; Wenxiu LI ; Fenghua WANG ; Shuli WU ; Dong JIA ; Xin GE ; Zhihua SHAN ; Tongzuo LI
Organ Transplantation 2026;17(1):106-115
Objective To evaluate the predictive value of different machine learning models constructed in a multicenter environment for potential organ donors and verify their clinical application feasibility. Methods The study included 2 000 inpatients admitted to five domestic tertiary hospitals from January 2020 to December 2023, who met the criteria for potential organ donation assessment. They were randomly divided into a training set and an internal validation set (7∶3). Another 300 similar patients admitted to the First Affiliated Hospital of Harbin Medical University from January 2024 to April 2025 were included as an external validation set. The area under the curve (AUC), sensitivity, specificity, accuracy and F1-score of three models were compared, and the consistency of the potential organ donor determination process was tested. Multivariate logistic regression analysis was used to identify predictive factors of potential organ donors. Decision curve analysis (DCA) was employed to verify the resource efficiency of each model, and the threshold interval and intervention balance point were assessed. Results Apart from age, there were no significant differences in other basic characteristics among the centers (all P>0.05). The consistency of the potential organ donor determination process among researchers in each center was good [all 95% confidence interval (CI) lower limits >0]. In the internal validation set, the XGBoost model had the best predictive performance (AUC=0.92, 95% CI 0.89-0.94) and the best calibration (P=0.441, Brier score 0.099). In the external validation set, the XGBoost model also had the best predictive performance (AUC=0.91, 95% CI 0.88-0.94), outperforming logistic regression and random forest models. Multivariate logistic regression showed that mechanical ventilation had the greatest impact (odds ratio=2.06, 95% CI 1.54-2.76, P<0.001). DCA indicated that the XGBoost model had the highest net benefit in the threshold interval of 0.2-0.6. The “treat all” strategy only had a slight advantage at extremely low thresholds. The recommended threshold interval, which balances intervention costs and clinical benefits, considers ≥50% positive predictive value (PPV) and ≤50 referrals per 100 high-risk patients. Conclusions The XGBoost model established in a multicenter environment is accurate and well-calibrated in predicting potential organ donors. Combined with DCA, it may effectively guide the timing of clinical interventions and resource allocation, providing new ideas for the assessment and management of organ donation after brain death.
2.Research progress on the relationship between early life obesogen exposure and childhood obesity
GAO Lei ; YE Zhen ; WANG Wei ; ZHAO Dong ; XU Peiwei ; ZHANG Ronghua
Journal of Preventive Medicine 2026;38(1):48-54
Childhood obesity has become a global public health issue. Current research indicates that early life obesogen exposure has emerged as a significant risk factor for childhood obesity. While obesogens have been confirmed to influence the development and progression of childhood obesity through mechanisms such as endocrine disruption and epigenetic programming, controversies remain regarding the establishment of causal relationships, assessment of combined exposures, and validation of transgenerational effects in humans. In recent years, novel approaches including multi-omics technologies, exposome-based analysis, and multigenerational cohort studies have integrated dynamic biomarker monitoring with analyses of social-environmental interactions, offering new perspectives and methodologies for constructing a systematic "exposure-mechanism-outcome" research framework. This article reviews literature from PubMed and Web of Science up to August 2025 on the association between early life obesogen exposure and childhood obesity, summarizing evidence on the health effects of early life obesogen exposure, major exposure pathways and internal exposure assessment, interactions and amplifying effects of social and environmental factors, as well as the biological mechanisms underlying obesogen action. It further examines current research frontiers and challenges, aiming to provide a theoretical foundation for early prevention and precision intervention of childhood obesity.
4.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
5.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.
6.Changes in the body shape and ergonomic compatibility for functional dimensions of desks and chairs for students in Harbin during 2010-2024
Chinese Journal of School Health 2025;46(3):315-320
Objective:
To analyze the change trends in the body shape indicators and proportions of students in Harbin from 2010 to 2024, and to investigate ergonomic compatibility of functional dimensions of school desks and chairs with current student shape indicators, so as to provide a reference for revising furniture standards of desks and chairs.
Methods:
Between September and November of both 2010 and 2024, a combination of convenience sampling and stratified cluster random sampling was conducted across three districts in Harbin, yielding samples of 6 590 and 6 252 students, respectively. Anthropometric shape indicators cluding height, sitting height, crus length, and thigh length-and their proportional changes were compared over the 15-year period. The 2024 data were compared with current standard functional dimensions of school furniture. The statistical analysis incorporated t-test and Mann-Whitney U- test.
Results:
From 2010 to 2024, average height increased by 1.8 cm for boys and 1.5 cm for girls; sitting height increased by 1.5 cm for both genders; crus length increased by 0.3 cm for boys and 0.4 cm for girls; and thigh length increased by 0.5 cm for both genders. The ratios of sitting height to height, and sitting height to leg length increased by less than 0.1 . The difference between desk chair height and 1/3 sitting height ranged from 0.4-0.8 cm. Among students matched with size 0 desks and chairs, 22.0% had a desk to chair height difference less than 0, indicating that the desk to chair height difference might be insufficient for taller students. The differences between seat height and fibular height ranged from -1.4 to 1.1 cm; and the differences between seat depth and buttock popliteal length ranged from -9.8 to 3.4 cm. Among obese students, the differences between seat width and 1/2 hip circumference ranged from -20.5 to -8.7 cm, while it ranged from -12.2 to -3.8 cm among non obese students.
Conclusion
Current furniture standards basically satisfy hygienic requirements; however, in the case of exceptionally tall and obese students, ergonomic accommodations such as adaptive seating allocation or personalized adjustments are recommended to meet hygienic requirements.
7.Applications of EEG Biomarkers in The Assessment of Disorders of Consciousness
Zhong-Peng WANG ; Jia LIU ; Long CHEN ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(4):899-914
Disorders of consciousness (DOC) are pathological conditions characterized by severely suppressed brain function and the persistent interruption or loss of consciousness. Accurate diagnosis and evaluation of DOC are prerequisites for precise treatment. Traditional assessment methods are primarily based on behavioral scales, which are inherently subjective and rely on observable behaviors. Moreover, traditional methods have a high misdiagnosis rate, particularly in distinguishing minimally conscious state (MCS) from vegetative state/unresponsive wakefulness syndrome (VS/UWS). This diagnostic uncertainty has driven the exploration of objective, reliable, and efficient assessment tools. Among these tools, electroencephalography (EEG) has garnered significant attention for its non-invasive nature, portability, and ability to capture real-time neurodynamics. This paper systematically reviews the application of EEG biomarkers in DOC assessment. These biomarkers are categorized into 3 main types: resting-state EEG features, task-related EEG features, and features derived from transcranial magnetic stimulation-EEG (TMS-EEG). Resting-state EEG biomarkers include features based on spectrum, microstates, nonlinear dynamics, and brain network metrics. These biomarkers provide baseline representations of brain activity in DOC patients. Studies have shown their ability to distinguish different levels of consciousness and predict clinical outcomes. However, because they are not task-specific, they are challenging to directly associate with specific brain functions or cognitive processes. Strengthening the correlation between resting-state EEG features and consciousness-related networks could offer more direct evidence for the pathophysiological mechanisms of DOC. Task-related EEG features include event-related potentials, event-related spectral modulations, and phase-related features. These features reveal the brain’s responses to external stimuli and provide dynamic information about residual cognitive functions, reflecting neurophysiological changes associated with specific cognitive, sensory, or behavioral tasks. Although these biomarkers demonstrate substantial value, their effectiveness rely on patient cooperation and task design. Developing experimental paradigms that are more effective at eliciting specific EEG features or creating composite paradigms capable of simultaneously inducing multiple features may more effectively capture the brain activity characteristics of DOC patients, thereby supporting clinical applications. TMS-EEG is a technique for probing the neurodynamics within thalamocortical networks without involving sensory, motor, or cognitive functions. Parameters such as the perturbational complexity index (PCI) have been proposed as reliable indicators of consciousness, providing objective quantification of cortical dynamics. However, despite its high sensitivity and objectivity compared to traditional EEG methods, TMS-EEG is constrained by physiological artifacts, operational complexity, and variability in stimulation parameters and targets across individuals. Future research should aim to standardize experimental protocols, optimize stimulation parameters, and develop automated analysis techniques to improve the feasibility of TMS-EEG in clinical applications. Our analysis suggests that no single EEG biomarker currently achieves an ideal balance between accuracy, robustness, and generalizability. Progress is constrained by inconsistencies in analysis methods, parameter settings, and experimental conditions. Additionally, the heterogeneity of DOC etiologies and dynamic changes in brain function add to the complexity of assessment. Future research should focus on the standardization of EEG biomarker research, integrating features from resting-state, task-related, and TMS-EEG paradigms to construct multimodal diagnostic models that enhance evaluation efficiency and accuracy. Multimodal data integration (e.g., combining EEG with functional near-infrared spectroscopy) and advancements in source localization algorithms can further improve the spatial precision of biomarkers. Leveraging machine learning and artificial intelligence technologies to develop intelligent diagnostic tools will accelerate the clinical adoption of EEG biomarkers in DOC diagnosis and prognosis, allowing for more precise evaluations of consciousness states and personalized treatment strategies.
8.Application of blood conservation measures with different red blood cell transfusion volumes in obstetrics and their impact on postpartum outcomes
Huimin DENG ; Fengcheng XU ; Meiting LI ; Lan HU ; Xiao WANG ; Shiyu WANG ; Xiaofei YUAN ; Jun ZHENG ; Zehua DONG ; Yuanshan LU ; Shaoheng CHEN
Chinese Journal of Blood Transfusion 2025;38(5):691-698
Objective: To evaluate the application of blood conservation measures in obstetric patients with different red blood cell transfusion volumes and to assess the impact of different transfusion volumes on postpartum outcomes. Methods: A retrospective investigation was conducted on 448 obstetric patients who received blood transfusions at the Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine from January 2016 to December 2022. Patients were divided into four groups (1-2 units group, 3-4 units group, 5-6 units group, and >6 units group) based on the volumes of red blood cells (RBCs) transfused during and within 7 days after delivery. The maternal physiological indicators, pre- and postpartum laboratory test indicators, obstetric complications, application of blood conservation measures, use of blood products, and postpartum outcomes were reviewed. The clinical characteristics, application of blood conservation measures, and their impact on postpartum outcomes were compared among different transfusion groups. Results: There were statistically significant differences in the multivariate logistic analysis of history of previous cesarean section (OR=1.781), eclampsia/pre-eclampsia/(OR=1.972) and postpartum blood loss>1 000 mL(OR=1.699)(P<0.05) among different transfusion groups. In terms of blood conservation measures, the more RBCs transfused, the higher the rate of mothers receiving blood conservation measures such as balloon occlusion, arterial ligation, autologous blood transfusion with a cell saver, and hysterectomy. With the increase in the volume of RBCs transfusion, the demand for fresh frozen plasma(FFP), cryoprecipitate, and platelet transfusions also increased. The hospitalization days for the four groups of parturients were 6.0 (4.0-9.0), 7.5 (5.0-14.8), 7.0 (4.5-13.0) and 11.0 (9.0-20.5), respectively (P<0.05) and the rates of ICU transfer were 2.0% (5/250), 9.4% (12/128),18.2% (6/33) and 51.4% (19/37), respectively (P<0.05). Both increased significantly with the increase in the volume of RBCs transfusion, and the differences between groups were statistically significant. Conclusion: Parturients who received higher volume of RBCs had multiple risks factors for bleeding before childbirth, had higher postpartum blood loss, and had a higher rate of application of various blood conservation measures. In addition, an increase in the volume of RBCs transfusion may have adverse effects on postpartum recovery.
9.Increased CT Attenuation of Pericolic Adipose Tissue as a Noninvasive Marker of Disease Severity in Ulcerative Colitis
Jun LU ; Hui XU ; Jing ZHENG ; Tianxin CHENG ; Xinjun HAN ; Yuxin WANG ; Xuxu MENG ; Xiaoyang LI ; Jiahui JIANG ; Xue DONG ; Xijie ZHANG ; Zhenchang WANG ; Zhenghan YANG ; Lixue XU
Korean Journal of Radiology 2025;26(5):411-421
Objective:
Accurate evaluation of inflammation severity in ulcerative colitis (UC) can guide treatment strategy selection. The potential value of the pericolic fat attenuation index (FAI) on CT as an indicator of disease severity remains unknown.This study aimed to assess the diagnostic accuracy of pericolic FAI in predicting UC severity.
Materials and Methods:
This retrospective study enrolled 148 patients (mean age 48 years; 87 males). The fat attenuation on CT was measured in four different locations: the mesocolic vascular side (MS) and opposite side of MS (OMS) around the most severe bowel lesion, the retroperitoneal space (RS), and the subcutaneous area. The fat attenuation indices (FAI MS, FAI OMS, and FAI RS) were calculated as the fat attenuation measured in MS, OMS, and RS, respectively, minus that of the subcutaneous area, and were obtained in the non-enhanced, arterial, and delayed phases. Correlations between the FAI and UC Endoscopic Index of Severity (UCEIS) were assessed using Spearman’s correlation. Predictors of severe UC (UCEIS ≥7) were selected by univariable analysis. The performance of FAI in predicting severe UC was evaluated using the area under the receiver operating characteristic curve (AUC).
Results:
The FAIMS and FAI OMS scores were significantly higher than FAI RS in three phases (all P < 0.001). The FAIMS and FAI OMS scores moderately correlated with the UCEIS score (r = 0.474–0.649 among the three phases). Additionally, FAI MS and FAI OMS identified severe UC, with AUC varying from 0.77 to 0.85.
Conclusion
Increased CT attenuation of pericolic adipose tissue could serve as a noninvasive marker for evaluating UC severity. FAI MS and FAI OMS of three phases showed similar prediction accuracies for severe UC identification.


Result Analysis
Print
Save
E-mail