1.Biosynthesis of natural products by non-conventional yeasts.
Zhilan QIAN ; Lili SONG ; Qi LIU ; Xiulong GONG ; Yijia KANG ; Ziyu HE ; Haoyu LONG ; Menghao CAI
Chinese Journal of Biotechnology 2023;39(6):2284-2312
Non-conventional yeasts such as Yarrowia lipolytica, Pichia pastoris, Kluyveromyces marxianus, Rhodosporidium toruloides and Hansenula polymorpha have proven to be efficient cell factories in producing a variety of natural products due to their wide substrate utilization spectrum, strong tolerance to environmental stresses and other merits. With the development of synthetic biology and gene editing technology, metabolic engineering tools and strategies for non-conventional yeasts are expanding. This review introduces the physiological characteristics, tool development and current application of several representative non-conventional yeasts, and summarizes the metabolic engineering strategies commonly used in the improvement of natural products biosynthesis. We also discuss the strengths and weaknesses of non-conventional yeasts as natural products cell factories at current stage, and prospects future research and development trends.
Yeasts/genetics*
;
Yarrowia/metabolism*
;
Gene Editing
;
Metabolic Engineering
2.Advances in the production of chemicals by organelle compartmentalization in Saccharomyces cerevisiae.
Tao LUAN ; Mengqi YIN ; Ming WANG ; Xiulong KANG ; Jianzhi ZHAO ; Xiaoming BAO
Chinese Journal of Biotechnology 2023;39(6):2334-2358
As a generally-recognized-as-safe microorganism, Saccharomyces cerevisiae is a widely studied chassis cell for the production of high-value or bulk chemicals in the field of synthetic biology. In recent years, a large number of synthesis pathways of chemicals have been established and optimized in S. cerevisiae by various metabolic engineering strategies, and the production of some chemicals have shown the potential of commercialization. As a eukaryote, S. cerevisiae has a complete inner membrane system and complex organelle compartments, and these compartments generally have higher concentrations of the precursor substrates (such as acetyl-CoA in mitochondria), or have sufficient enzymes, cofactors and energy which are required for the synthesis of some chemicals. These features may provide a more suitable physical and chemical environment for the biosynthesis of the targeted chemicals. However, the structural features of different organelles hinder the synthesis of specific chemicals. In order to ameliorate the efficiency of product biosynthesis, researchers have carried out a number of targeted modifications to the organelles grounded on an in-depth analysis of the characteristics of different organelles and the suitability of the production of target chemicals biosynthesis pathway to the organelles. In this review, the reconstruction and optimization of the biosynthesis pathways for production of chemicals by organelle mitochondria, peroxisome, golgi apparatus, endoplasmic reticulum, lipid droplets and vacuole compartmentalization in S. cerevisiae are reviewed in-depth. Current difficulties, challenges and future perspectives are highlighted.
Saccharomyces cerevisiae/metabolism*
;
Saccharomyces cerevisiae Proteins/metabolism*
;
Golgi Apparatus/metabolism*
;
Metabolic Engineering
;
Vacuoles/metabolism*